Kompleks düzlemde Bernstein-Walsh eşitsizlikleri
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
/[/mathbb{C}/] kompleks düzlem, /[G/subset /mathbb{C}/], /[L:=/partial G/] Jordan eğrisi ile sınırlı sonlu bir bölge ve /[/Omega :=/overline{/mathbb{C}}/backslash /overline{G}/] olsun. /[w=/Phi /left( z /right)/] ile /[/Omega /] bölgesinden /[/Delta :=/left/{ w:/leftw /right>1 /right/}/] bölgesine tanımlı, /[/Phi /left( /infty /right)=/infty /] ve /[/underset{z/to /infty }{/mathop{/lim }}/,/frac{/Phi /left( z /right)}{z}>0/] koşullarını sağlayan konform ve yalınkat dönüşüm gösterilsin. /[h/left( z /right)/], /[{G}'/supseteq G/]'de tanımlı ağırlık fonksiyonu olsun. Her /[p>0/] için${{A}_{p}}/left( h,G /right)$ ile /[G/] bölgesinde analitik ve/[{{/left/f /right/}_{{{A}_{p}}/left( h,G /right)}}={{/left( /iint/limits_{G}{h/left( z /right){{/leftf/left( z /right) /right}^{p}}d{{/sigma }_{z}}} /right)}^{/frac{1}{p}}}</infty /] koşulunu sağlayan fonksiyonlar sınıfı; /[L/] kapalı, ölçülebilir eğri olmak üzere, ${{/mathcal{L}}_{p}}(h,L)$ ile /[L/] üzerinde integrallenebilen ve/[{{/left/f /right/}_{{{/mathcal{L}}_{p}}(h,L)}}:={{/left( /int/limits_{L}{h/left( z /right){{/leftf(z) /right}^{p}}/leftdz /right} /right)}^{/frac{1}{p}}}</infty /]koşulunu sağlayan fonksiyonlar sınıfı gösterilsin. Her $n/in /mathbb{N}$ için ${{/wp }_{n}}$ ile derecesi $n$'yi aşmayan cebirsel polinomların sınıfı gösterilsin. Bu tez'de; $X:=C(/overline{G})$; $Y$:= ${{/mathcal{L}}_{p}}/left( h,/partial G /right)$ veya $Y:={{A}_{p}}/left( h,G /right)$ olmak üzere, her ${{P}_{n}}/in {{/wp }_{n}}$ için aşağıdaki iki problem kompleks düzlemin çeşitli bölgelerinde incelenmiştir: /[/begin{align} & 1.{{/left/{{P}_{n}} /right/}_{X}}/le {{/mu }_{n}}/left( h,G /right){{/left/{{P}_{n}} /right/}_{Y}},{{/mu }_{n}}(h,G)/to /infty ,/,/,/,n/to /infty , // & 2./left{{P}_{n}}(z) /right/le /frac{{{/eta }_{n}}(h,G)}{d(z,L)}/,/,{{/left/{{P}_{n}} /right/}_{Y}}{{/left/Phi (z) /right}^{n+1}},/,/,/,/,/,z/in /Omega ,{{/eta }_{n}}(h,G)/to /infty ,/,/,/,n/to /infty . // /end{align}/] Yani, /[{{/mu }_{n}}/] ve /[{{/eta }_{n}}/] sayılarının /[/infty /]'a gitmesi, /[h/] ve /[G/]'nin geometrik özelliklerine bağlı olarak incelenmiştir. Let /[/mathbb{C}/] be complex plane, /[G/subset /mathbb{C}/] be a finite region bounded by a Jordan curve /[L:=/partial G/] and /[/Omega :=/overline{/mathbb{C}}/backslash /overline{G}/] . Let /[w=/Phi /left( z /right)/] be the univalent conformal mapping of /[/Omega /] onto the /[/Delta :=/left/{ w:/leftw /right>1 /right/}/] normalized by /[/Phi /left( /infty /right)=/infty /] and /[/underset{z/to /infty }{/mathop{/lim }}/,/frac{/Phi /left( z /right)}{z}>0/] . Let /[h/left( z /right)/] be a weight function defined in /[{G}'/supseteq G/] . For any /[p>0/] , let us denote by ${{A}_{p}}/left( h,G /right)$ the class of functions f which are analytic in /[G/] and satisfying the condition/[{{/left/f /right/}_{{{A}_{p}}/left( h,G /right)}}={{/left( /iint/limits_{G}{h/left( z /right){{/leftf/left( z /right) /right}^{p}}d{{/sigma }_{z}}} /right)}^{/frac{1}{p}}}</infty /] Let ${{/mathcal{L}}_{p}}(h,L)$ denote the class of functions f which are integrable and satisfying the condition ,/[{{/left/f /right/}_{{{/mathcal{L}}_{p}}(h,L)}}:={{/left( /int/limits_{L}{h/left( z /right){{/leftf(z) /right}^{p}}/leftdz /right} /right)}^{/frac{1}{p}}}</infty /]when /[L/] is rectifiable curve.Let ${{/wp }_{n}}$ denote the class of arbitrary algebraic polynomials of degree at most $n/in /mathbb{N}$ . In this thesis, for any ${{P}_{n}}/in {{/wp }_{n}}$, following two problems have been investigated in various regions of the complex plane:/[/begin{align} & 1.{{/left/{{P}_{n}} /right/}_{X}}/le {{/mu }_{n}}/left( h,G /right){{/left/{{P}_{n}} /right/}_{Y}},{{/mu }_{n}}(h,G)/to /infty ,/,/,/,n/to /infty , // & 2./left{{P}_{n}}(z) /right/le /frac{{{/eta }_{n}}(h,G)}{d(z,L)}/,/,{{/left/{{P}_{n}} /right/}_{Y}}{{/left/Phi (z) /right}^{n+1}},/,/,/,/,/,z/in /Omega ,{{/eta }_{n}}(h,G)/to /infty ,/,/,/,n/to /infty . // /end{align}/] where $X:=C(/overline{G})$; $Y$:= ${{/mathcal{L}}_{p}}/left( h,/partial G /right)$, $Y:={{A}_{p}}/left( h,G /right)$.It is shown that /[{{/mu }_{n}}/] and /[{{/eta }_{n}}/] tends to /[/infty /] depending on geometric properties of /[h/] and /[G/].
Collections