Show simple item record

dc.contributor.advisorHacısalihoğlu, Hilmi
dc.contributor.authorErkekoğlu, Fazilet
dc.date.accessioned2020-12-10T14:27:34Z
dc.date.available2020-12-10T14:27:34Z
dc.date.submitted1986
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/306764
dc.description.abstractÖZET Bu çalışma Uç bölüm halinde düzenlenmiştir. îlk bölümde, bazı tanımlar ve temel kavramlara yer verilmiştir. Birinci bölümde, bir G metriği ile bağdaşabilme ve simetri şartları yardımıyla, bir M manifoldu üzerinde bir D koneksiyo- nunun varlığı ve tekliği verilmiştir. İkinci bölümde, koneksiyon koruyan, konform ve paralel dönüşüm ler ele alınmıştır. Riemann koneksiyonunu koruyan yegane konform dönüşümlerin, homotetiler olduğu verilmiştir. Daha sonra, paralel dönüşümün, koneksiyon koruyan ve konform olma durumları incelenmiş tir. üçüncü bölümde, bazı sonuçlar verilmiştir. Bunlardan ilkinde, konform dönüşüm ele alınmış ve bu dönüşüme ait ölçü fonksiyonunun değişik tanımlanması yoluna gidilmiştir. Daha sonra, koneksiyon koruyan ve konform dönüşümler altında korunan bazı özellikler incelen miştir. Son olarak da, paralel dönüşümün koneksiyon koruyan ve kon form olması durumunda M nin M paralel alt manifoldu için bazı sonuçlar verilmiştir. -v
dc.description.abstractSUMMARY This work is arranged into three sections. In an introductory chapter, definitions and fundamental concepts are presented. In the first section it is proven by means of conditions of symmetry and compatibility with a metric 6, that there exists a unique connection D on the manifold M. In the second section, connection preserving, conformal and parallel transformations are taken into consideration, proving that the only conformal transformations which preserve the Riemannian connection are homotheties. Subsequently conditions are investigated under which a parallel transformation is connection preserving and conformal. In the third section some results are presented. First, a con formal transformation is considered and alternative formulae for its scale function are given. This is followed by an investigation of certain properties preserved under connection preserving and conformal transformations. Finally the manifold M which is parallel to the manifold M is investigated where the parallel transformation is connection preserving and conformal... ?n-en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectGiyim Endüstrisitr_TR
dc.subjectClothing Industryen_US
dc.titleKonfeksiyon koruyan dönüşümlerin diferensiyel geometrisi
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentDiğer
dc.identifier.yokid197560
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityGAZİ ÜNİVERSİTESİ
dc.identifier.thesisid172353
dc.description.pages91
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess