Show simple item record

dc.contributor.advisorNuray, Fatih
dc.contributor.authorKiyak Uçar, Yeliz
dc.date.accessioned2020-12-02T09:29:59Z
dc.date.available2020-12-02T09:29:59Z
dc.date.submitted2008
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/24734
dc.description.abstractI, N pozitif tamsayılar kümesinin alt kümelerinin bir ideali iken metrik uzaylarda dizilerin I-yakınsaklığı kavramı tanıtılmıştır. Bu kavram metrik uzaylarda tanımlı reel fonksiyonların dizilerinin I-yakınsaklığı kavramına genişletilmiş ve ilgili bazı temel özellikler verilerek ilgili teoremler ispatlanmıştır. Bu temel özellikler extremal I-limit noktaları ile ilişkilendirilmiştir. Ayrıca istatistiksel yakınsaklık kavramı, I-yakınsaklık kavramına genelleştirilerek istatistiksel yakınsaklığın sonuçları I-yakınsaklığa genişletilmiştir. Bununla birlikte fonksiyonların istatistiksel sürekliliğinin bir genelleştirilmesi olan yeni bir süreklilik kavramı tanımlanarak bazı özellikleri verilmiştir. Reel fonksiyonlar için tanımlanan I-süreklilik kavramı keyfi topolojik uzaylardaki fonksiyonlara dönüştürülerek genelleştirilmiştir. Ayrıca metrik uzaylarda ve aynı zamanda dizisel uzaylarda I-süreklilik ve süreklilik kavramlarının denk oldukları gösterilmiştir.
dc.description.abstractWe introduce and study of I-convergence of sequences in metric spaces, where I is an ideal of subsets of the set N of positive integers. We extend this concept to I-convergence of sequence of real functions defined on a metric space and prove some theorems and basic properties of this concepts. This basic properties deal with extremal I-limit points. Further the concept of statistical convergence generalize to I-convergence and the conclusions of statistical convergence extend to I- convergence. Besides we introduce a new notion of continuity, which is the generalization of statistical continuity of functions. We generalize the notion of I-continuity, which was defined for real functions by transforming to functions on arbitrary topological spaces. Further we show the equvalence of I-continuity and continuity for metric spaces and sequential spaces as well.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleI-yakınsaklık ve I-süreklilik
dc.title.alternativeI-convergence and I-continuity
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.subject.ytmMathematics
dc.identifier.yokid305862
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityAFYON KOCATEPE ÜNİVERSİTESİ
dc.identifier.thesisid213216


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess