Kablosuz algılayıcı ağların bulut hesaplaması kullanılarak internete genişletilmesi
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Kablosuz Algılayıcı Ağlar (KAA) uzun yıllar boyunca araştırmalara konu olmuş bir mimaridir. KAA sistemleri, yeni çıkan ve çekici çözümleriyle; ulaşım, iş, sağlık, askeri, endüstriyel otomasyon, çevresel görüntüleme gibi geniş bir yelpazede kullanılmaktadır. Gözlemlenmek istenen bölge üzerine konuşlandırılmış, ortam karakteristiklerini ölçümleme kabiliyetine sahip, kablosuz iletişim yapabilen çok sayıda duyarga düğümünden oluşmakta olan bu ağların; duyarga düğümlerinin birim maliyetleri azdır ve düşük kurulum maliyetleri bulunmaktadır. Öte yandan; güç kaynağının sınırlı olması, hesaplama gücünün çok az oluşu ve üst seviye (IP) ağ protokolünden yoksun olmaları en temel yapısal kısıtlamalarıdır.Günümüzde geleneksel KAA verilerin daha geniş alanlara taşınabilmesi, üzerinde çalışılmakta olan önemli bir araştırma konusudur. Duyarga düğümlerin kullanmakta olduğu IEEE 802.15.4 iletişim protokolünün IP ile farklı olmasından, akademik ve sektörsel çalışmalar iki yöne odaklanmaktadır. Birinci yaklaşım KAA iletişimi için, düşük tüketimli bir IP hizmeti geliştirilmesidir; 6LoWPAN isminde tanımlanmış olan uluslararası proje bu konu dâhilindeki araştırmalarını sürdürmektedir. Diğer yaklaşım ise; türdeş olmayan ağlar arasında iletişime imkân veren bir geçit yapısının sunulmasıdır. Araştırmamın ilk kısmında, KAA ölçümlerinin internet üzerinden erişilmesine olanak sağlayacak bir Yayınla/Katıl altyapısı geliştirilmiştir. Yayınla/Katıl modelinde mesajlaşma yapan sistemler, veri-merkezli iletişimin en bilindik örneklerindendir. Ölçeklenebilir oluşu ve dinamik uygulama topolojisine imkân verebilmesi sebebiyle KAA'lara uygulanabilirler. Temel Yayınla/Katıl modelinde bulunan üç ana öğe olan yayınlayıcı, katılımcı ve bildirim servisinin gerçeklenmesi için beş farklı yazılım geliştirilmiştir. Bu beş yazılım; üç farklı çalışma ortamında, iki farklı programlama dili kullanılarak farklı davranış biçimlerini gerçeklemesi için geliştirilmiştir. Önerilen sistemin temel amacı, duyarga düğümlerin ürettiği ölçüm değerlerini, merkez düğüm üzerinden katılımcıların çeşitli platformlardan erişebileceği bulut ortamına aktarılarak daha etkin kullanılmasını sağlamaktır.Bulut bilişim, kuruluşlara herhangi bir altyapı yatırımı yapmadan servis kapasitelerini etkili ve hızlı bir şekilde arttırmalarını sağlamaktadır. Bulut bilişim, kullanıcıların ihtiyaç duyduğu yazılım, donanım, depolama ve hesaplama hizmetleri gibi temel ihtiyaçlarını veri merkezleri üzerinden sunan mimaridir. Üretilen ölçüm verilerinin saklanmasında ve katılımcılara sunulmasında, son on yılda yükselmekte olan bu teknoloji tercih edilmiştir.Geleneksel KAA sistemleri, gerçek dünyadan veri toplamak için tasarlanmıştır, fakat verileri toplayan organizasyonun artık o veriye ihtiyaç duymaması durumunda, o veriye ne yapılacağı veya ne şekilde saklanacağının yanıtı bulunmamaktadır. Çok sıklıkla yapılan ortam karakteristiklerine ait ölçümlerin, ilişkisel veritabanları üzerinde depolanması kullanım zorlukları doğurmaktadır. Toplanan verinin büyük ölçekte oluşu sebebiyle, belirli periyotlarda veritabanlarından geçmiş veriler temizlenir. Bu durum geçmişe dönük raporların alınmasını veya ileriye dönük kestirim hesaplarının tutarsız olmasına sebep olmaktadır. Geliştirilen sistem ile tüm ölçüm verisi Microsoft SQL Azure bulut veritabanı üzerinde kapasite sorunu olmadan depolanabilmektedir.Bulut bilişimin sunduğu sınırsız hesaplama ve depolama yetisi sayesinde, geleneksel KAA'daki bazı sorunların çözümü mümkün olabilmektedir. Araştırmanın ikinci kısmı, ölçüm verilerinin bulut ortamı üzerinde nasıl etkin kullanılacağı üzerinedir. Bu kapsamda üç temel problemin çözümü üzerinde çalışmalar gerçeklenmiştir. Bunlar; KAA'lardaki düğüm dağıtımının iyileştirilmesi, hatalı ölçüm yapan sensör düğümlerin tespit edilmesi ve ölçüm yapılamayan bölgeler için tahmini ölçüm değerinin hesaplanmasıdır.Plansız yapılan düğüm dağıtımlarından oluşan kapsama alanı boşluklarının tespit edilmesi ve giderilmesi için bulut ortamında, bir servis geliştirilmiştir. Bu servis genetik algoritma kullanarak, optimum değişiklik ile dağıtımın iyileştirilmesini sağlamaktadır.KAA'ların ürettiği ölçüm değerlerinin doğruluğu, servis kalitesinin belirlenmesindeki en önemli ölçütlerden biridir. Fiziksel hasar veya yazılımsal sebeplerden hatalı ölçüm yapmaya başlayan düğümlerin tespit edilerek, üretmekte oldukları hatalı verilerin katılımcılara aktarılması engellenmelidir. Bulut ortamı üzerinde geliştirilmiş olan ikinci servis; aykırı gözlem teşhisidir. Dinamik Bayes sınıflandırma yöntemi kullanılarak hatalı ölçüm yapan düğümler tespiti gerçekleştirilmiş ve üretilen hatalı verinin sisteme dahil olması engellenmiştir.Geliştirilen model, KAA sistemleri ve bulut mimarisi arasında bir bütünleşme çatısı önermektedir. Önerilen entegrasyon çatısının görevi, KAA sisteminden üretilen olayların daha yaygın kitlelere sunulmak üzere bulut ortamına aktarılmasıdır. Bu sayede bulut bilişimin sunduğu imkanlar ile bahsi geçen servisler gerçeklenebilmektedir. Wireless Sensor Networks (WSN) is a concept that has been the subject of the researches for many years. WSN systems are used in a wide range such as transport, business, health, military, industrial automation, environmental imaging with its incoming and winning solutions. Unit costs of sensor nodes of these networks which consist of so many sensor nodes and can establish wireless communication and have the ability of measuring environmental characteristics and have been positioned in the area desired to be observed are low and they have low set-up costs. On the other hand, power supply is limited, calculation performance is very low and they are deprived of high level communication (IP) and these are the basic structural limitations.Transferring traditional WSN data to a wider area in our day is an important research subject that is studied on. Since communication protocol IEEE 802.15.4 that sensor motes use complies with IP, academically and sectoral studies focus on two aspects. First approach is to develop a low consumed IP service for WSN communication international project defined as 6LoWPAN continues its studies within this subject. Other approach is to present an accommodation structure that enables communication between heterogeneous networks. In the first part of thesis research, a Publish-Subscribe infrastructure has been developed to provide WSN measurements to be accessed through internet. The systems that have messaging in Publish-Subscribe model are the best-known examples of data-centric communication. They can be applied to WSNs because of that they are scalable and enable dynamic application topology. Five different software have been developed so that publisher, attendee and notification services, three main elements in main Publish-Subscribe model can take place. These five software have been developed to perform different course of actions by using two different programming languages in three different work environments. In brief, the basic purpose of the proposed model is to enable measurement values that sensor nodes produce to be transferred into cloud environment that the participants access through central node from various platforms and provide them to be used more efficient.Cloud computing provides companies to increase their service capacities in an efficient and quick way without making any infrastructure investment. Cloud computing is the architecture that presents the basic needs of the users such as software, hardware, storage and calculations services through data centers. This technology which has been on the increase for the last ten years has been preferred to keep measurements values produced and present to the participants.Traditional WSN systems has been designed to collect data from the real world but on condition that the organization which collects the data doesn?t need that data any longer, there will not any response what to do that data and how it will be kept. The storage of measurements frequently made regarding environment characteristics on relational database causes difficult of use. Because of that the data collected is very big, previous data is deleted from databases in certain periods. This situation causes forward-looking estimates to be in consistent and reports looking back to be received. With the system I developed, all measuring data can be stored on Microsoft SQL Azure cloud database without having a capacity problem.By the virtue of unrestricted estimating and storing ability that Cloud computing presents, the solution of some problems in traditional WSN is possible.The second part of my thesis research is aimed how to use measuring data efficiently on cloud environment.In this scope, the studies have been made for the solution of three basic problems. These are improvement of nodal distribution in WSNs, determination of sensor nodes that make wring measuring and calculation of estimated measuring value for the areas that can?t be measured.A service has been developed to determine and overcome network coverage spaces arising from unplanned nodal distributions in cloud environment. This service provides improvement of distribution with optimum change by using genetic algorithm.The accuracy of measuring values that WSNs produce is one of the most important metrics in the determination of service quality. Nodes that start making wrong measurements due to various reasons should be determined and transferring wrong data they produce to the participants should be prevented. The second service developed in cloud environment is detection of outlier observation. By using dynamic Bayes classification method, the nodes that make wrong measurements are determined.The developed model proposes integration between WSN systems and cloud architecture. The role of proposed integration frame is to transfer the data WSN system produces to cloud environment to transfer bigger masses and aforementioned services have been occurred within the possibility cloud computing presents.
Collections