Kesirli integraller ile ilgili bazı eşitsizlikler
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Kesirli türev ve kesirli integral kavramları ilk olarak Liouville tarafından ortaya atıldı. Bu fikrin temel kaynağı; kesirli türev ve kesirli integral kavramı türev ve integrallerin sadece tamsayılar için var mıdır sorusundan yola çıkılarak ortaya çıkmıştır. Daha sonra Euler kesirli türevi yeniden ele aldı ve 17. yüzyıldan itibaren Leibniz, Euler, Lagrange, Abel, Liouville ve diğer birçok matematikçinin, kesirli mertebe için diferansiyel ve integrasyonun genelleştirilmesine dayanan öncü çalışmalarıyla gelişmeye başlanmıştır. Keyfi mertebeli diferansiyel ve integrasyon kavramları, tamsayı mertebeli türev ve n-katlı integralleri birleştiren ve genelleştiren kavramlardır. Buradan hareketle, bu tez dört bölümden oluşmaktadır. İlk bölümde, kesirli integraller hakkında genel bilgiler verilip daha sonra temel kavramlardan bahsedilecektir. İkinci bölümde kesirli integraller hakkında bilgiler verilecek olup; kesirli integral ve kesirli türevin elde edilişi ve bu konu hakkındaki çözüm yöntemleri, üçüncü bölümde ise, eldeki verilerden yararlanılarak üç başlık altında toplanan bulgular, son bölümde ise, sonuçlar ve öneriler verilecektir. Fractional derivatives and fractional integral notions were first raised by Liouville. The main source of this idea; fractional derivatives and fractional integral concept has emerged from the question: `Is there derivatives and integrals for only integers.` Then, Euler dealt with fractional derivatives again and Leibniz, Euler, Lagrange, Abel, Liouville and many other mathematicians have begun to develop the fractional derivatives since 17th century as their pioneering work based on differential and integration to be generalized to fractional order. Arbitrary order differential and integration concepts are the notions which combine and generalize integer-order derivatives and n-fold integrals. Thus, this thesis consists of four chapters. In the first chapter, of how the concepts of fractional integral and fractional derivative is given. In the second chapter, all the necessary definitions and basic theorems for this study have been given. The third section, benefiting from the available data the findings summarized under three headings are given. In the fourth chapter, results and recommendations will be given.
Collections