Show simple item record

dc.contributor.advisorDenizhan, Yağmur
dc.contributor.authorHabiboğlu, Mehmet Gökhan
dc.date.accessioned2020-12-04T11:03:07Z
dc.date.available2020-12-04T11:03:07Z
dc.date.submitted2007
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/76536
dc.description.abstractBu tezde, dogrusal olmayan özerk akısların nitel bir temsilini çıkarmaya çalıstık.Kaotik ve dogrusal olmayan özerk akısları yöneten denklemlerin bilinmedigi ve sistemhakkında önceden bilinen tek bilginin sistemin boyutu oldugu varsayıldı. ncelememiziyalnızca durum uzayında baslangıç kosullarının toplandıgı bölgelerden yaptık. Görevimiz,yeterince çok sayıda baslangıç kosulundan kaydolunmus bir grup gezingeyi temel alarak,sistemin mümkün olan tüm uzun dönem davranıs biçimlerini tanımlamak ve sistemgezingelerinin hangi baslangıç kosullarından basladıgında hangi davranıs biçiminisergileyecegini belirlemektir.Tez boyunca ?çekirdek kestirimi? veya ?imge isleme filtreleri? gibi farklımatematiksel araçlar kullanıldı. Dogrusal olmayan sistemlerdeki önemli karakteristikdavranıslar geometrik olarak tanımlandıktan sonra, çekim havzaları ve diger bazı havzatürleri kendi gelistirdigimiz algoritmaların yardımlarıyla tanımlandı. Önerilen algoritmalarönce iki boyutlu faz portrelerinde kullanıldı, daha sonra da bazı kısıtlarla üç boyutlusistemlere genisletildi. Kaotik sistemler, komplike garip çekici fenomenleri yüzünden tezedahil edilmedi.Çok degiskenli çekirdek kestiricileri tez boyunca bir çok yerde kullanıldı. Ancakyalnızca bant genisligi kösegen matrislerden olusan kestiriciler kullanıldı. Bunun nedeni eniyi çok degiskenli çekirdek kestiricilerin bulunmasının, özellikle de bant genisligi verininyerine göre degisiyorsa, bu tezde arastırmak için çok komplike olmasıdır.Bu kestirim teknikleri ve algoritmik katkı, sürekli, otomatik, kaotik olmayan vedogrusal olmayan sistemlerin uzun dönem davranısları hakkında bize hem daha iyi biranlayıs sagladı, hem de bu sistemlerin çekicilerini belirleme konusunda ve daha sonrakontrol amaçlı kullanılabilecek bu çekicilerin havzaları üzerine yaklasık bir tanımlamaverme konusunda yardımcı oldu.
dc.description.abstractIn this thesis, we are interested in a good qualititive representation of a nonlinearautonomous flow. It is assumed that the equations governing a given nonchaotic nonlinearautonomous flow are unknown. The only prior knowledge about the system is itsdimension, that is to say the number of state variables. As a realistic assumption thisanalysis will be confined to a part of the state space where the initial conditions aregathered. On the basis of a set of trajectory recordings gathered for a sufficiently large setof initial conditions our task is to identify the possible long term behaviour alternatives andto determine the set of initial conditions starting from which the system trajectories exhibita specified long term behaviour.We will use different mathematical tools such as kernel estimation algorithms orimage processing filters to visualize the long term behaviour of the given system. After thegeometrical identification of important characteristic behaviours in our nonlinear system,we will define the basin of attractions and basins of some other phenomena with the helpof algorithms which are originally developed. Proposed algorithms will be used first ontwo dimensional non-linear phase portraits and then will be extended to the thirddimension with restrictions and limitations. Chaotic systems will be omitted due to theircomplicated strange attractor phenomena.Multivariate kernel estimators will be used among many places in the thesis. Wewill restrict ourself to diagonal bandwidth matrices since the optimal multivariate kernelestimators, especially if the system bandwidth varies according to the data position, are toocomplicated to find a place in this study.These estimation techniques and our algorithmic contribution will give a betterinsight about the long term behaviour of non-linear systems and will help us accomplishthe aim of the thesis which is to identify the attractors of a continuous time, autonomous,non-chaotic system and to provide an approximate description of the basins of attractionsto be used later for control purposes.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleEstimation of basin detection and representation from non-linear system data
dc.title.alternativeDoğrusal olmayan sistem verisinden havza sezimi ve temsilinin kestirimi
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentElektrik-Elektronik Mühendisliği Anabilim Dalı
dc.identifier.yokid9004584
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBOĞAZİÇİ ÜNİVERSİTESİ
dc.identifier.thesisid200414
dc.description.pages96
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess