Geometric properties of coupler-curve equation of planar slider-crank and four-bar linkages
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tez çalışması, düzlemsel dört-çubuk ve krank-biyel mekanizmalarının biyel eğrilerine odaklanmaktadır. Biyel eğrilerinin geometrik özellikleri incelenmiştir. Hem krank-biyel hem de dört çubuk mekanizmalarının biyel eğrisi denklemlerinin ikinci derece ve doğrusal bileşenlerden oluştuğu gösterilmiştir. Biyel eğrisi denklemlerinde görülen ikinci derece bileşenler, biyel eğrisinin bulunabileceği alanın sınırlarını çizen çember ifadeleridir. Krank-biyel mekanizmasının yörünge sentezi problemi bu tezin bir diğer çalışma konusudur. Yörünge sentezi problemine kısıtlı bir çözüm sunulmuş ve sayısal olarak sınanmıştır. Biyel eğrisi denkleminin keşfedilen geometrik özellikleriyle sayısal yakınsama yöntemlerinin birleşimi olan bir yöntem sunulmuştur. Çözüm yaklaşımı, bir nokta bulutuna biyel eğrisi uydurmaya ve 5 hassasiyet noktası problemine çözüm sunmaktadır. This thesis study focuses on coupler-curve of planar slider-crank and four-bar mechanisms. The geometric properties of the coupler-curve equations are investigated. The coupler-curve equations of both slider-crank and four bar mechanisms are shown to consist of quadratic and linear components. The quadratic components that appear in the coupler-curve equations are circles which determine the area the coupler-curve may be located. The path generation problem of the slider-crank mechanism is another aspect of this thesis. A limited solution to the path generation problem is introduced and tested numerically. A method that is a combination of the discovered geometric properties of the coupler-curve and numerical approximation methods is introduced. The solution approach works for the task of fitting a coupler-curve on a cluster of points and five precision points problem.
Collections