Bir üniteli sistemler için stochastik modeller
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
ÖZET Bu çalışmada, başarısızlığı giderilebilen ve bundan sonra da üzerine düşen görevi tam anlamıyla yerine getirebilen, bir üniteli sistemler dikkate alındı, sistemin başarısızlıktan önceki ve sonraki durumları incelendi. Bir üniteli sistemler için stochastic modeller, sistem güve nilirlik modellenmesinde temel teşkil eder. Bu söz konusu sistem lerde başarısızlık ortaya çıktığında, sistemi korumak için bakım ve onarım yapılır. Başarısızlık durumunda, bakım ve onarımı yapıldıktan sonra sistemin tekrar çalışmaya başladığı zaman `üst zaman`, sistemin bakım ve onarımının devam ettiği zaman, `alt zaman` olarak ifade edilir. Alt ve üst durumlarda bulunan, bir üniteli sistemler için el de edilebilirlik teorisinden söz edilebilir. Elde edilebilirlik en genel anlamda, onarımdan geçmiş bir sistem için belirli bir t zamanda çalışma olasılığıdır. Başarısız olan sistemi, işlevini yerine getirebilir hale sokmak için temel ve optimal yer değiştirme modelleri kullanılır. Bu modeller, yaş yer değiştirme modelleri ve blok yer değiştirme modelleri olarak ikiye ayrılır. Bu modellerin ayrık ve indirimli çeşitlerinden de sözedilebilir. Yaş yer değiştirme, ünitenin ilk hangisi olursa olsun başarı sızlık ya da to yaş durumunda yer değiştirmesi; blok yer değiştir me ise ünitenin, t = nT (n = 0, 1, 2,...) zaman noktalarında (c^ maliyeti ile) ve başarısızlık durumunda (c maliyeti ile) yer İÎİdeğiştirmesidir. Blok yer değiştirme modellerinin de aşağıdaki üç çeşidinden söz edilebilir: Model I. Başarısız bir ünitenin başarısızlık anında hemen yer değiştirmesi, Model II. Başarısız bir ünitenin sonraki programlı yer de ğiştirmeye kadar başarısız bir şekilde kalması, Model III. Başarısız bir ünitenin bir minimal onarımdan geç mesi. Bir yaş yer değiştirme için gerekli üniteler doğrudan doğruya ve hemen elde edilemeyebilir. Bu durumda sipariş verme modelleri kullanılır. Sipariş verme modelleri; Model IV ve Model V ünite nin demirbaş durumuna göre incelenir. Model IV. Ünite çalışıyorsa bozuluncaya kadar, sipariş edilmiş ünite demirbaşa kaydedilir. O zamana kadar çalışamaz du- rumundaysa sipariş edilmiş ünite teslim edilir edilmez hemen bozuk ünitenin yerine konur. Model V. Çalışan bir ünitenin herhangi bir durumuna bakıl maksızın, sipariş edilmiş ünite teslim edilir edilmez sistemde yer değiştirme yapılır ve ünite işlevine devam eder. Yalnızca incelemeyle tesbit edilebilen başarısızlıklardaki inceleme rejimlerinden ve başarısızlığın tesbitine kadarki toplam beklenen maliyeti azaltan optimal inceleme rejimlerinden söz edi lebilir. ÎV SUMMARY In this study, one-unit systems of which failures are impro vable and thereby are able to fulfil their function were taken in to consideration and then the position of systems before and after failure were examined. Stochastic Models for one-unit systems form a basis for reli ability of system in modulation. This is important, to save and repair the system in case of a failure in the mentioned systems. In case of failure the time on which the system restarts working, after the system is treated and repeared is stated `upper time` ; the time during what the repairing and treating of the system con tinues is stated `lower time`. For the one-unit systems in up and down positions, the ava ilability theory can be mentioned of. In the most general meaning, availability is the working probability at the time t for the repeared system. These basic and optimal replacement models are used for putting the failed system in use. These models can be divided into two cotegories such as age replacement models and block replace ment models Discrete and discount kinds of models can also be counted. Age replacement is defined as a replacement of unit upon fa ilure or of age to, whichever comes first; block replacement is defined as a replacement of unit at time points t = nT (n = 0, 1, 2»... ) (with its cost c ) and upon failure(with its cost c ). There kinds of variation of the block models can be mentioned about as follow: Model I. A failed unit is replaced immediatly at the time of failure. Model II. A failed unit remains in failure until the next scheduled replacement. Model II. A failed unit passes a minimal repair. The required units for age replecement can not be provided immediately and directly. In this case, the ordering models are used. The ordering models, Model IV and Model V are detected upto inventory's position. Model IV, If the unit works, the ordered unit is recorded to inventory until its failure. If it is out of order until that time, it is replaced by the defective unit once the ordered unit is delivered. Model V. Without considering any position of a working unit, a replacement is done in the system once the ordered unit is deli vered and the unit continues to work. It is mentioned from inspection policies in which failure can be detected only by inspections and from optimal inspection poli cies which minimize the total expected cost on to failure detection. Vt
Collections