Konservatif matrislerin bir sınıfı
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
38 ÖZET Bu çalışma iki bölümden oluşmaktadır. Birinci bölüm de çalışmamız için gerekli olan temel tanım ve teoremler detaya girilmeden verilmiştir. İkinci bölümde ise önce regüler ve coregüler matrisler için önemli olan knopp'un çekirdeği tanımlandı ve reel diziler için bir teorem ispatlandı. Daha sonrada çekirdek fikri ilk iki teoremle konservatif matrislere genişletildi. Banch çekirdeği q(x) altlineer fonksiyoneline bağlı olarak tanımlandı ve J/ - A ve p =§(c?Û = 1 olma durumu için iki teorem ifade edildi. Ayrıca ikinci bölümde teoremlerin ispatı için gerekli olan iki lemma ifade ve ispat edilerek önemleri ile ilgili bir örnek verildi. Son olarak ikinci bölümün sonunda esas teoremlerin ispatlan verildi. 39 SUMMARY This work consist of three chapters, in first chapter, requirement concepts and essential properties for our study are given without detail. In second chapter, Firstly, the definition of Knopp's Core is given and a theorem is proved which are characterized reguler aud coreguler matrices. Than, the idea of core is extended to the conservative matrices by two theorems. After that, relating to the q(x) sublinear functional Banach core is defined and for being ç?/=A, and $=§(cA) = 1 two teorems are stated and proved. Moreover, in second chapter two lemmas are stated and proved which is essential for proving our main theorems. Then an example is given. Finally, in the end of the second chapter the proof of the main theorems are given.
Collections