Richardson ekstrapolasyon metodunun sayısal türev, sayısal integrasyon ve singüler pertubre olmuş başlangıç değer problemlerine uygulamaları
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
ÖZET RICHARDSON EKSTRAPOLASYON METODUNUN SAYISAL TÜREV, SAYISAL İNTEGRASYON VE SİNGÜLER PERTÜRBE OLMUŞ BAŞLANGIÇ DEĞER PROBLEMİNE UYGULAMALARI AMİRALİYEVA, İlhame Yüksek Lisans Tezi, Matematik Anabilim Dalı Tez Danışmanı: Yrd Doç. Dr. Hakkı DURU Mart 2001, 37 sayfa Bu çalışmada Richardson metodunun Nümerik Analizdeki bazı uygulamaları ele alınmıştır. Bu metot yaklaşık çözümün kesinliğinin yükseltilmesi için kullanılan en modern ve pratik metotlardan sayılmaktadır. Sunulan bu çalışmada ekstrapolasyon metodunun nümerik diferansiyelleme, nümerik integrasyon, adi diferansiyel denklem için başlangıç-değer problemi ve singüler pertürbe olmuş başlangıç-değer problemi gibi alanlardaki uygulamaları incelenmektedir. Ele alınan her durum için hata değerlendirmeleri yapılmış ve bunların orijinal çözümün düzgünlüğü ile bağlantı şekli verilmiştir. Teorik sonuçlar nümerik örnekler üzerinde denetlenmiştir. Anahtar kelimeler: Richardson ekstrapolasyon, başlangıç-değer problemi, singüler pertürbasyon problemi, fark şeması, düzgün yakınsaklık ABSTRACT APPLICATIONS OF RICHARDSON EXTRAPOLATION FOR NUMERICAL DERIVATION, NUMERICAL INTEGRATION AND SINGULARLY PERTURBED INITIAL VALUE PROBLEMS AMİRALÎYEVA, İlhame Master, Mathematics Science Supervisor: Yrd. Doç. Dr. Hakkı DURU March 2001, 37 pages In this study, a technique known as Richardson's Extrapolation is embloyed to generate results of high accuracy by using low-order formulas. This investigation is concerned with the numerical differentation, numerical integration, numerical solution by finite difference method of initial value problem and singularly perturbed initial value problem. Uniform error estimates are esteblished. A numerical examples are also considered. £ey words: Richardson Extrapolation, initial value problem, singular perturbation problem, difference scheme, uniform convergence in
Collections