Derivations on lattice implication algebra
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tez esas olarak üç bölümden oluşmaktadır. İlk bölümde kafes implication (çıkarım) cebirleri ile ilgili önbilgiler ve ilgili özellikler verilmiştir. İkinci bölümde, kafes implication (çıkarım) cebirlerinde türev ve f-türev tanımı verilmiş ve ilgili özellikleri listelenmiştir. Üçüncü bölümde, kafes implication (çıkarım) cebirlerinde simetrik ikili türev tanımı verilmiştir. Kafes implication (çıkarım) cebirlerinde verilen üç dönüşümün de simetrik ikili türev özelliğini taşıdığı görülmüştür.Daha sonra simetrik ikili türevin bazı önemli özellikleri listelenmiş ve ıspatlanmıştır. Ayrıca, kafes implication (çıkarım) cebirlerinde simetrik ikili türev aracılığı ile Fix ve Kernel kümeleri tanımlanmış ve bu kümelere ait ana özellikler çalışılmış ve ıspatlanmıştır. This thesis consists of three parts. In the first part preliminaries about the lattice implication algebras and their properties are given.In the second part, the notions of derivation and f-derivation of lattice implication algebras are defined and all properties related are listed. In the third part, the notion of symmetric bi-derivation in lattice implication algebras is defined. Three examples of maps in lattice implication algebras have been checked to see that they really have the properties of symmetric bi-derivation in lattice implication algebra. Then some important properties of these symmetric bi-derivations are listed and proved. Moreover, the Fix set and the Kernel are defined on lattice implication algebras for the symmetric bi-derivations and main properties of these sets are studied and proved.
Collections