Artinian weakly supplemented modules
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tezde Artin zayf tümlenen modüller ve tümden Artin zayf tümlenen modüller tanmlanm ve bu modüllerin baz ِzellikleri incelenmitir. Artin zayf tümlenen modüllerin homomorf gِrüntüsü, küçük ِrtüleri ve sonlu toplamlarnn Artin zayf tümlenen modüller olduًu, fakat Artin zayf tümlenen modüllerin sonsuz toplamnn Artin zayf tümlenen modül olmayabileceًi kantlanmtr. Tümden Artin zayf tümlenen modüllerin faktِr modülleri de tümden Artin zayf tümlenendir. Bir modülün Artin zayf tümlenen (tümden Artin zayf tümlenen modül) olmas için bu modülün bir lineer kompakt altmodüle gِre faktِr modülünün Artin zayf tümlenen modül (tümden Artin zayf tümlenen modül) olmas gerek ve yeterlidir. In this thesis artinian weakly supplemented modules and totally artinian weakly supplemented modules are defined and some properties of these modules are studied. It is proved that homomorphic image, small cover and finite sum of artinin weakly supplemented modules are artinian weakly supplemented, but infinite direct sum of artinian weakly supplemented modules need not be artinian weakly supplemented. A factor module of totally artinian weakly supplemented modules is also totally artinian weakly supplemented. A module is artinian weakly supplemented (totally artinian weakly suplemented) if and only if a factor of it by a linear compact submodule is artinian weakly supplemented (totally artinian weakly suplemented).
Collections