Gen ifade veritabanlarında içerik tabanlı arama
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Büyük ölçekli gen ifade veritabanlarında zaman serisi mikrodizi deneylerinin içerik tabanlı aranması problemi ilk defa bu çalışmada araştırılmaktadır. Probleme bir bilgi geri getirim görevi olarak yaklaşılmış ve bir deneyin tamamı sorgu olarak ele alınıp önceki deneyler içerisinde aranmıştır. Metadata (üstveri) açıklamalarından daha ziyade içerik benzerliğine göre uygun deneylerin veri tabanı içerisinden bulunup getirilmesi gerekmektedir. Bu çalışmada, farklı parmak izi oluşturma yöntemleri ve uzaklık hesaplama şemalarının karşılaştırılması çeşitli zaman noktaları içerisindeki genlerin farklı ifade olma durumlarına dayalı geri getirim çatısı üzerinden sunulmuştur. Bizim oluşturduğumuz veri tabanı üzerinde yapılan tüm deneyler için, sonuçlar Pearson Bağıntı Katsayısı ve Tanimoto Uzaklığı'nın Öklid Uzaklığına göre farkı ifadeye dayalı parmak izlerinin karşılaştırılmasında yaklaşık %15 daha iyi olduğunu göstermektedir. The problem of content-based searching of time-series microarray experiments in large-scale gene expression databases, for the first time, is investigated in this study. The problem is examined as an information retrieval task where an entire experiment is taken as the query and searched through a collection of previous experiments. The relevant experiments are required to be retrieved based on the content similarity rather than their meta-data descriptions. A comparison of different fingerprinting and distance computation schemes is presented over a retrieval framework based on the differential expression of genes in varying time points. For all experiments carried out on database we create, results show that Pearson Correlation Coefficent and Tanimoto Distance present about 15% better performance than Euclidean Distance in comparison fingerprints based on differential expression.
Collections