Pnömatik bir sistemin parametrik ve yapay sinir ağları ile tanılanması
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tez çalışmasında, İ.T.Ü. Makina Fakültesi Otomatik Kontrol Laboratuvarı'nda bulunan elektropnömatik bir sistemin dinamik parametrelerinin, beyaz gürültü sinyalleri uygulanarak ve sistemin bu sinyallere piston konumu olarak verdiği cevapları kullanarak sistem tanılanması gerçekleştirilmiştir. Tanılama sırasında ilk olarak en küçük kareler yöntemiyle parametrik tanılama yapılmış ve ARX model yapısı seçilmiştir. Daha sonra aynı giriş verileri kullanılarak yapay sinir ağları ile tanılama amaçlanmıştır. Yapay sinir ağları eğitim algoritması olarak Levenberg - Marquardt algoritması kullanılmıştır. Son bölümde ise parametrik model ile yapay sinir ağ modeli karşılaştırılmış, yapay sinir ağlarını eğitilerek oluşturulan modelin, parametrik modele göre gerçek sisteme daha yakın sonuçlar verdiği görülmüştür. Karşılaştırma sırasında çapraz korelasyon testi yapılmış ve ortalama karesel hataya bakılmıştır. Aynı zamanda, yapay sinir ağlarının maliyeti bu çalışmada açıkça görülmektedir. In this thesis, parametric identification for parameters of dynamics are experimentally carried out on a pneumatic system, which was installed in Automatic Control Laboratory of Mechanical Faculty of I.T.U, through applying white noise signals and acquiring the system responses as piston position. Firstly, it is aimed to design parametric identification using the recursive least square method and ARX model was selected as model structure. Afterwards, neural network identification carried out as using same input data and Levenberg ? Marquardt algorithm was selected as training algorithm. Concluding section, artificial neural network model compared with parametric model. Artificial neural network is generated by the model training, according to parametric model gives result closer to real system. During the comparing, mean square error and cross correlation test was applied. At the same time,it is obvious that cost of artificial neural network is more than parametric identification.
Collections