Power consumption estimation using in-memory database computation
dc.contributor.advisor | Dağ, Hasan | |
dc.contributor.author | Alamin, Mohamed | |
dc.date.accessioned | 2021-05-08T08:00:46Z | |
dc.date.available | 2021-05-08T08:00:46Z | |
dc.date.submitted | 2016 | |
dc.date.issued | 2018-08-06 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/638416 | |
dc.description.abstract | Son elektrik tüketimini tahmin etmek amacıyla, hız ve güvenilirliği artırmak gerekir. hız ile ilgili olarak, birçok kat daha hızlı HDD den veri manipüle sağlar en iyi çözümdür IN-Bellek veritabanını kullanır. Bu amaçla, biz `en iyi` açık kaynak In-Memory veritabanı gibi YCSB gibi standart bir kriter kullanarak seçmeniz gerekir. güvenilirlik için, makine öğrenimi algoritmalarını kullanmaktadır. Model performans ve doğruluk verilerine her zaman bağlı olarak değişebilir bu yana, birçok algoritmalar test etmek ve en iyisini seçmek. Bu tezde, Python ve Aerospike bellek veritabanında öğrenme makinesi kullanılarak elektrik tüketimini tahmin etmek Londra Hanehalkı SmartMeter Enerji Tüketimi Verileri kullanın. Çalışma veri seti için en iyi algoritma Torbalama olduğunu göstermektedir. Biz de Ar-kare her zaman en iyi algoritma seçmek için iyi bir test olmadığını kanıtlamak. Son olarak, biz belirli bir zamanda tüketimini tahmin etmek deneyimli olmayan kullanıcılar tarafından kullanılabilir Python kullanarak makine öğrenimi, bir grafiksel kullanıcı arabirimi öneriyoruz | |
dc.description.abstract | In order to reciently predict electricity consumption, we need to improve the speedand the reliability. Concerning the speed, we use IN-Memory database, which is thebest solution that allows manipulating data many times faster than HDD. For thispurpose, we need to choose `the best` open-source In-Memory database using a standardbenchmark, such as YCSB.For reliability, we use machine learning algorithms. Since the model performance andaccuracy may vary depending on data each time, we test many algorithms and selectthe best one.In this thesis, we use SmartMeter Energy Consumption Data in London Householdsto predict electricity consumption using machine learning in Python and Aerospike in-memorydatabase. The study shows that the best algorithm for our data set is Bagging.We also prove that R-squared is not always a good test to choose the best algorithm.Finally, we propose a graphical user interface for machine learning using Python, thatcan be used by non-experienced users to predict the consumption at a certain time. | en_US |
dc.language | English | |
dc.language.iso | en | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol | tr_TR |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Power consumption estimation using in-memory database computation | |
dc.title.alternative | Bellek üzerinde çalışan veri tabanları (In memory database) ile makine öğrenmesi | |
dc.type | masterThesis | |
dc.date.updated | 2018-08-06 | |
dc.contributor.department | Fen Bilimleri Ana Bilim Dalı | |
dc.identifier.yokid | 10123674 | |
dc.publisher.institute | Fen Bilimleri Enstitüsü | |
dc.publisher.university | KADİR HAS ÜNİVERSİTESİ | |
dc.identifier.thesisid | 498131 | |
dc.description.pages | 62 | |
dc.publisher.discipline | Bilişim Teknolojileri Bilim Dalı |