Lineer olmayan bazı dalga denklemlerin çözümlerinin patlaması üzerine
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Patlama konusu 1940'larda ve 1950'lerde Semenov'un `Zincir Reaksiyon Teorisi` ile ortaya çıkmıştır. 1960'larda özellikle S. Kaplan, H. Fujita, A. Friedman ve R. T. Glassey tarafından bu konuda daha kapsamlı çalışmalar yapılmıştır. Lineer olmayan evrim denklemlerinin çözümlerinin davranışı ve özellikle patlamasının öğrenilmesi uygulama ve teorik açıdan önem arzetmektedir. Bu bağlamda evrim denklemlerinin dalga çözümleri birçok araştırmacının yoğun ilgisine neden olmuştur. Tezimizde iki konu üzerinde yoğunlaşacağız. Birinci konu quasilinear (hemenhemenlineer)hiperbolik denklemler için çeşitli problemlerin çözümlerinin patlama olayıdır. İkinci konu olarak siğ su denklemler sistemi için çözümün patlaması ele alınmiştir. Hiperbolik quasilinear kısmi diferansiyel denklemler için yazılmış başlangıç-sınır değer problemleri, fizik, mekanik ve mühendislik bilimlerine yönelik birçok uygulamada ortaya çıkmaktadır. Bu denklemlere yönelik çözümlerin niteliği çeşitli yollarla araştırılmıştır.Tezimiz giriş bölümü dahil beş bölümden oluşmakta ve tez çalışmamızdan üretilen uluslararası dergilerde yayınlanmış dört makale mevcuttur.Tezin ikinci ve üçüncü bölümlerinde farklı sınır koşulları altında Quasilinear Hiperbolik Denklemlerinin patlamasına ait sonuçlar yer almaktadır. İkinci bölümde sınır şartlarında sönüm terimi içeren iki quasilinear hiperbolik başlangıç-sınır değer problemi incelenmektedir. Üçüncü bölümde ise sınır şartlarında sönüm terimi içeren bir quasilinear hiperbolik başlangıç-sınır değer problemi dört sınır şartı için incelenmektedir. Bu sonuçlar V. K. Kalantarov ve A. Ladyzhenskaya tarafından verilen genelleştirilmiş içbükeylik yöntemi kullanılarak elde edilmiştir.Tezimizin dördüncü bölümünde ise bir model problem üzerinde çalışma yapılmıştır. Model problem olarak iskele direği problemi seçilmiştir. Bu çalışmada, denklemde dissipative terimiyle birlikte quasilinear hiperbolik sınır-değer probleminin global çözümlerinin yokluğu incelenmiştir. Bir boyutlu uzayda bu başlangıç sınır-değer problemi, dalgaların ve akımın etkilerinden dolayı titreşen bir iskele direğinin davranışını modellemektedir. İkinci ve üçüncü bölümde Genelleştirilmiş İçbükeylik yöntemi, dördüncü bölümde Levine tarafından geliştirilen İçbükeylik Yöntemi kullanılarak incelenen problemler için sonuçlar elde edilmiştir. Bu yöntemlerde, problemin ürettiği bir fonksiyonel ele alınarak bu fonksiyonelin, İçbükeylik Yöntemi veya Genelleştirilmiş İçbükeylik yönteminde istenilen şatları sağladığı ispatlanmaktadır. Bu vesile ile Global Çözümün mevcut olmadığını göstermiş oluyoruz.Dördüncü bölümde akıntı ve dalga etkisinde iskele direğinin titreşimleri ifade eden model problem çalışılmış ve çözümün belli koşullar altında patlama olayı incelenmiştir. Bu sonuçlar H. A. Levine tarafından verilen içbükeylik yöntemi kullanılarak elde edilmiştir.Tezimizin ikinci üçüncü ve dördüncü bölümlerinde ilgili başlangıç-sınır değer problemler için çeşitli örnekler inceledik ve çözümülerinn patlaması üzerine değerlendirmeler yaptık. Tezin beşinci bölümünde ise son yirmi yılda araştırmacıların yoğun ilgisini çeken sığ su problemlerinin çözümlerinin patlama koşulları araştırılmıştır. Bu bölümde genelleştirilmiş Camassa-Holm denklemini içeren iki bileşenli denklem sistemi için patlama (Blow-Up) olayı incelenmektedir. Belirli doğal başlangıç şartları altında uzaya göre yerel patlama kriterleri formülize edilmektedir. Burada Johnson, Constantin ve Ivanov un oluşturduğu iki bileşenli sistemlerin genelleşmesi için; daha önce Brandolese, Cortez ve Novruzov un makalelerinde sunulmuş olan lineer olmayan dispersive denklem için uzaya göre yerel patlama koşullarına benzer koşullar elde edilmiştir.Tezimizde yukarıda referans verdiğimiz sonuçlara dayanarak iki bileşenli genelleştirilmiş Camassa-Holm denklemler sistemi incelenmiştir. Ele alınan problemlerin hem teorik hemde pratik açıdan önemli olduğunu düşünüyoruz. The subject, blow-up come out in the 1940s and 1950s with Semenov's `Chain Reaction Theory`. In the 1960s, widespread studies were carried out by S. Kaplan, H. Fujita, A. Friedman and R. T. Glassey. Studying the behavior and especially the blow-up of the solutions for nonlinear evolution equations is of practical and theoretical importance. Many researchers have attracted by the wave solutions of evolution equations and they have given attention for the study in this field.In our thesis we have studied on two issues. The first issue is the blow-up of the solutions of various initial-boundary value problems for some quasilinear hyperbolic equations. Secondly, the blow-up of the solution for the system of shallow water equations have been investigated. Initial-boundary value problems written for hyperbolic quasilinear partial differential equations emerged in several applications to physics, mechanics and engineering sciences. Natures of the solutions to these equations have been investigated by several means.The thesis consists of five chapters, including the introductory chapter, and there are four articles produced from our thesis and published in international journals.In the second and third chapters of our thesis, the results of the blow-up of the Quasilinear Hyperbolic Equations under different boundary conditions are included. In the second chapter, we have examined below two quasilinear hyperbolic initial-boundary value problems with the damping terms in the boundary conditions. u_tt+∆^2 u=f(u) (t,x)∈[├ 0,T)×Ω┤u=0, Δu+α(x) (∂u_t)/∂ν=0, (t,x)∈[├ 0,T)×Γ┤u(0,x)=u_0 (x), u_t (0,x)=u_1 (x), x∈ Ωandu_tt+∆^2 u=f(∆u) (t,x)∈[├ 0,T)×Ω┤∂u/∂ν=0, ∂Δu/∂ν+β(x)Δu_t=0, (t,x)∈[├ 0,T)×Γ┤u(0,x)=u_0 (x), u_t (0,x)=u_1 (x), x∈ ΩIn the third chapter, we have examined below quasilinear hyperbolic initial-boundary value problem with the damping term in the boundary conditions. The problem is examined for four different boundary conditions. These results are obtained using the Generalized Concavity Method given by V. K. Kalantarov and A. Ladyzhenskaya. u_tt-∆u+∆^2 u=f(-∆u) (t,x)∈[├ 0,T)×(Ω∪∂Ω)┤u(0,x)=u_0 (x), u_t (0,x)=u_1 (x), x∈ ΩProblem with weak damping term on the boundary∆u=0, (∂u_t)/∂ν-Δ^2 u=0, (t,x)∈[├ 0,T)×∂Ω┤Problem with strong damping term on the boundary∂u/∂ν=0, ∂∆u/∂ν+∆u_t=0 , (t,x)∈[├ 0,T)×∂Ω┤Additional problem with strong damping term on the boundaryu=0, ∂∆u/∂ν+∆u_t=0 , (t,x)∈[├ 0,T)×∂Ω┤Additional problem with weak damping term on the boundary∂∆u/∂ν=0, ∂u/∂ν+u_t=0 , (t,x)∈[├ 0,T)×∂Ω┤In the fourth chapter of our thesis, a model problem is studied. The Riser problem is chosen as the model problem. In this work, the nonexistence of the global solutions of below quasilinear hyperbolic initial-boundary value problem with dissipative term in the equation is considered in the one-dimensional space. This initial-boundary value problem models is the behaviour of a riser vibrating due to the effects of waves and current. u_tt+ αu_t+2βu_xxxx-2[(ax+b) u_x ]_x+ β/3 (u_x^3 )_xxx- [(ax+b) u_x^3 ]_x- β (u_xx^2 u_x )_x=f(u) (t,x)∈(0,T)×[0,l]u(t,0)=u(t,l)=0,u_xx (t,0)=u_xx (t,l)=bf(-∆u), t∈(0,T)u(0,x)=u_0 (x), u_t (0,x)= u_1 (x), x∈[0,l]For the blow-up proofs we have achieved by the use of the so-called the Generalized Concavity Method given by V. K. Kalantarov and A. Ladyzhenskaya in second and third chapter and the Concavity Method given by H. A. Levine in the fourth chapter.For the Concavity Method, it is required to prov that the functional which is produced by the initial-boundary value problem satisfy below inequality and the hypothesis of Levine lemma.Ψ^'' (t) Ψ(t)-(1+γ) [Ψ^' (t)]^2≥0 For the Concavity Method, it is required to prov that the functional which is produced by the initial-boundary value problem satisfy below inequality and the hypothesis of V. K. Kalantarov and A. Ladyzhenskaya.Ψ^'' (t)Ψ(t)-(1+γ) [Ψ^' (t)]^2≥-2C_1 Ψ(t) Ψ^' (t)-C_2 Ψ^2 (t) We hereby prove that the global solution is not available.In the second, third and fourth chapters of our thesis, we considered various examples of related initial-boundary value problems and examined the blow-up of solutions.In the fifth chapter of the thesis, the blow-up conditions of the solutions of shallow water equations system which have attracted the attention of researchers in the last two decades are investigated. İn this chapter we have studied the Blow-Up phenomena for a two-component system of equations including the generalized Camassa-Holm equation. Under certain natural initial conditions, local-in-space blow-up criteria are formulated. We have obtained the similar conditions presented by Brandolese, Cortez and Novruzov for nonlinear dispersive equations for the generalization of two-component systems initially formulated by Johnson, Constantin and Ivanov. A two-component generalized system of Camassa-Holm equations is examined based on the results we refer to above.In this chapter we have considered the following two-component Cauchy problem for the generalized Camassa-Holm equation.u_t- u_xxt+3u_x u-〖uu〗_xxx-2u_xx u_x+[g(u)]_x+ ρρ_(x )=0 ρ_(t )+ (ρu)_x=0 u(x,0)=u_0 (x) ρ(x,0)=ρ_0 (x) where u(x,t) denotes the horizontal velocity of the fluid and ρ(x,t) is a parameter related to the free surface elevation from equilibrium (or scaler density). When g(u)=ku and ρ(x,t)≡0 the first equation becomes the Camassa-Holm equation, where k is a dispersive coefficient related to the critical shallow water speed.We have established a `local-in-space` blow-up criteria for two-components initial-boundary value equations system. The presented results extend and specify the earlier blow-up criteria for such type of the system.By our opinion the results obtained from the problems studied in this thesis are important both in theoretical and practical terms.
Collections