Linner integral denklemler için bazı çözüm yöntemleri
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
İntegral denklemler bilinmeyen fonksiyonun integral işareti altında yer aldığı lineer veya lineer olmayan denklemlerdir. Bu tip denklemler uygulamalı matematik ve fizik alanlarında sıklıkla kullanılmaktadır. Başlangıç değer veya sınır değer koşullarını sağlayan bir diferansiyel denklem tek bir integral denklem ile ifade edilebileceğinden, integral denklemler ve çözüm metotları oldukça önem taşımaktadır. İntegral denklemler esas olarak üç farklı başlık altında sınıflandırılırlar:1. İntegrasyon limitlerine görea. Her ikisi de sabit: Fredholm integral denklemib. Bir tanesi değişken: Volterra integral denklemi2. Bilinmeyen fonksiyonun konumuna görea. Sadece integral işareti altında: Birinci tipb. İntegral işaretinin hem altında hem de dışında: İkinci tip3. Bilinen fonksiyon $f$'in değerine görea. Sıfıra denk: Homojenb. Sıfırdan farklı: Homojen olmayan Bu çalışmada, lineer formdaki Fredholm ve Volterra integral denklemleri, Fredholm ve Volterra integro-diferansiyel denklemleri, Abel integral denklemi, Singüler integral denklemler, Volterra-Fredholm integral denklemleri, Volterra-Fredholm integro-diferansiyel denklemleri, Volterra ve Fredholm integral denklem sistemlerinin çözümlerinin Adomian Ayrıştırma, Değiştirilmiş Adomian Ayrıştırma, Gürültü Terimi, Doğrudan Hesaplama, Ardışık Yaklaşım, Seri Çözümü ve Laplace Dönüşümü metotları ile ne şekilde bulunabileceği incelenmiştir. Ayrıca başlangıç veya sınır değer koşulları ile verilen bir diferansiyel denklemi bir integral denkleme çevirme yöntemi ve sonrasında yukarıda sözü edilen metotlardan biri kullanılarak elde edilen integral denklemin çözümünün nasıl elde edileceği olgusu üzerinde durulmuştur. An integral equation is linear or nonlinear equation in which the unknown function occurs under an integral sign. This kind of equations appears widely in many areas of applied mathematics and physics. Integral equations and their solution methods are important because a differential equation given by either boundary or initial value conditions can be condensed into a single integral equation. Integral equations are classified according to three different dichotomies:1. Limits of integrationa. Both fixed: Fredholm integral equationb. One variable: Volterra integral equation2. Placement of unknown functiona. Only inside of the integral sign: First typeb. Both inside and outside of the integral sign: the Second type3. The value of the known function $f$ a. Equivalent to zero: Homogeneousb. Different from zero: Nonhomogeneous In this thesis, we have studied the solutions of the linear integral equations of the forms Fredholm and Volterra integral equations, Fredholm and Volterra integro-differential equations, Abel integral equation, Singular integral equations, Volterra-Fredholm integral equations, Volterra-Fredholm integro-differential equations, system of Volterra and Fredholm integral equations using the Adomian Decomposition, the Modified Decomposition, the Noise Term Phenomenon, the Direct Computation, the Successive Approximation, the Series Solution and the Laplace Transform Methods.
Collections