Transport denklemler için carleman kestirimleri ve uygulamaları
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Tez üç bölümden oluşmaktadır. Birinci bölümde gerekli bazı temel tanımlara ve teoremlere yer verilmiştir. İkinci bölümde, ikinci mertebeden bir lineer diferensiyel operatör için Carleman kestiriminin tanımı ifade edilmiş ve hiperbolik tipten denklemlere ilişkin olarak, durağan olmayan bir transport denklem için Carleman kestirimi elde edilmiştir. Üçüncü bölümde Carleman kestirimlerinin uygulanması kapsamında, biyolojik dokularda veya atmosferde ışık ve reaktörlerde nötronların taşınımı gibi olayların modellenmesinde kullanılan transport denklemi için bazı ters problemlerin kararlılık durumları araştırılmıştır. This thesis consists of three sections. The first section is devoted to some essential definitions and theorems. In the second section definition of the Carleman estimate for a second order differential operator is given and a Carleman estimate for a nonstationary transport equation is derived. Simple heat equation, direct derivation of a Carleman estimate for a parabolic equation and a global Carleman estimate are introduced. Finally, in the third section stabilities of some inverse problems for transport equations which are used in modelling of propagation of light in biological tissues or in atmosphere and neutrons in reactors etc. are investigated as applications of Carleman estimates.
Collections