Düzlem kafes sistemlerin sonlu elemanlar metodu ile çözümü (kuvvet metodu)
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
ÖZET Takdim edilen bu Lisansüstü Çalışmasında lineer elâstik olan düzlem kafes kiriş sistemlerinin statik analizi kuvvet metodu kullanılarak yapılmıştır. Metod sonlu elemanlar meto du için formüle edildikten sonra hiperstatik bilinmeyenler oto matik olarak seçilmiştir. Hiperstatik bilinmeyenlerin seçimi için geliştirilen ye ni bir metojtda hiperstatik bilinmeyenlere ait birim yükleme lerden doğan iç kuvvet dağılımı (denge denklemlerinin homojen çözümleri) sistem içerisinde dallanmamaktadır. Bu nedenle sis- terdn mümkün olduğu kadar az sayıda elemanı tesir alanı için de kalmakta, başka bir deyimle, kuvvet dağılımı bölgesel ol maktadır. Denge denklemlerinin bu tür homojen çözümlerine `kom- pak` homojen çözümler denir. Sistemin süreklilik denklemleri homojen çözümlerle kurulursa hiperstatik bilinmeyenlerin kat sayı matrisi band şeklini almaktadır. Söz konusu metod klasik kuvvet metoduna önemli bir yenilik getirmekte ve metodun yapı sistemlerinin statik analizine uygulanmasında yeni imkanlar açmaktadır. SUMMARY In this thesis the Force Method is used to solve problems of linear elastostatics. After a presentation of the Force Method as a solution procedure for the Finite Element Method an extense discussion of the authomatic choice of the redundant foces is given. A new method for the choice of the redundant forces is described which produces `compact` self-stressing states. `Compact` self-stressing states have only a very small region of influence within a structure. Thus the compatibility con ditions are given as a set of equations with a banded matrix of the coefficients. Therefor the proposed method has some advantages compared to known methods and opens a new field of applications of the Force Method in structural mechanics.
Collections