Investigation of the effects of microencapsulation materials and spray drying process on microencapsulated cream powder
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Mikroenkapsülasyon, katı, sıvı veya gaz fazlarındaki gıda bileşenlerinin bir veya daha fazla kaplama maddesi (duvar materyali) içine hapsedilerek çevresel etkenlerden (sıcaklık, nem, ışık) korunması, stabilizasyonu, kontrollü salınımı için kullanılan; taşıma, işleme ve depolama aşamalarında kolaylık sağlayan bir teknolojidir. Püskürtmeli kurutma ile gerçekleştirilen mikroenkapsülasyon işleminde, enkapsülasyon duvar materyalinin ve kurutucuya beslenecek emülsiyonun karakteristik özellikleri enkapsülasyon verimliliğini doğrudan etkilemektedir. Başarılı bir mikroenkapsülasyon için stabilitesi yüksek, düşük viskoziteli ve küçük yağ damlacık boyutuna sahip emülsiyonların elde edilmesi önemlidir. Mikroenkapsülasyon işleminde duvar materyali olarak karbonhidrat ve proteinler yaygın olarak kullanılmaktadır. Bu çalışmada, 5 farklı karbonhidrat (yüksek ve düşük dekstroz eşdeğerlikli maltodekstrin, laktoz, sükroz, okside nişasta) ve 2 farklı protein (sodyum kazeinat, yağsız peyniraltı suyu konsantresi tozu) çeşidi, 5 farklı konsantrasyonda (karbonhidrat/protein oranı %10-50) kullanılarak 50 farklı formülasyonda emülsiyon üretilmiştir. Emülsiyon stabilitesinin ölçümü için emülsiyonlarda kremleşme indeksi, viskozite ve yağ damlacık boyutu analizleri yapılmıştır. Kurutucuya beslenecek en uygun emülsiyon formülasyonunun seçiminde, çok kriterli karar verme yöntemlerinden TOPSIS yöntemi kullanılmış, en uygun emülsiyon formülasyonu K-HM-20 olarak belirlenmiştir. Çeşitli püskürtmeli kurutma koşullarının mikroenkapsüle krema tozu üzerindeki etkilerinin araştırılması amacıyla farklı giriş sıcaklıkları (150, 170, 190 °C), besleme debisi (9.0, 19.5, 30 mL/dk), ve aspirasyon oranlarında (%50, %75, %100) üretilen mikroenkapsüle krema tozu örnekleri incelenmiştir. Sonuçlara göre, giriş sıcaklığının artması yüzey serbest yağ yüzdesi yüksek, pürüzlü ve küçük partiküller elde edilmesine yol açmıştır. Serbest yağ içeriği ve yüzey yağ miktarı toz ıslanabilirliğini etkilemiştir. Uçucu yağ asidi miktarı giriş sıcaklığıyla ters orantılı değişirken, aspirasyon oranındaki değişimin serbest yağ asitleri üzerindeki etkisi diğer parametrelere kıyasla daha zayıf kalmıştır. Farklı püskürtmeli kurutma koşullarının toz yoğunluğunda önemli bir farklılığa neden olduğu bulunmuştur. Microencapsulation is a process in which food components in solid, liquid or gas phases (core material) are trapped in one or more coating material (wall material). It is used for protecting the core material from environmental factors (temperature, humidity, light), for its stabilization, controlled release, and easier transportation, handling, and storage. In microencapsulation by spray drying, the characteristics of the wall material and the feed emulsion directly affect the encapsulation efficiency. For a successful microencapsulation, it is important to obtain stable emulsions with low viscosity and small oil droplet size. Carbohydrates and proteins are widely used as wall materials in the microencapsulation process. In this study, five different carbohydrates (6 DE maltodextrin, 18 DE maltodextrin, lactose, sucrose, oxidized starch) and two different proteins (sodium caseinate, fat-free whey protein concentrate powder) used in five different proportions (ratio of protein/wall material in between 10-50%) and 50 types of emulsions were produced. In order to measure the emulsion stability, creaming index, viscosity, and fat droplet size analyses were performed. The most stable emulsion formulation that would be fed to the spray dryer was determined by TOPSIS, a multi-criteria decision analysis method, and the most suitable formulation was found as C-HM-20. Effects of different spray drying conditions as inlet temperature (150, 170, and 190 °C), feed flow rate (9.0, 19.5 and 30 mL/min), and aspiration rate (50%, 75%, and 100%) on microencapsulated cream powder were investigated. It is shown that increasing inlet temperature has led to a slower wetting of the powder particles and resulted in an increase in surface free fat percentage. Higher inlet temperatures also resulted in smaller particles with a partly shriveled surface. The wettability of powder is influenced by the content of free fat, and the quantity of fat on the surface. Volatile free fatty acids quantity was lowered as the inlet temperature increased. The impact of aspiration rate on free fatty acids quantification was weaker than of inlet temperature and feed flow rate. It is found that the change of the spray drying conditions caused a significant impact on powder density.
Collections