Sar imgelerinde gözetimsiz sınıflandırma yöntemleri ile arazi örtüsü sınıflandırması
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Arazi örtüsü terimi, yeryüzünün doğal ve insan yapımı fiziksel örtüsünü ifade etmektedir. Aynı zamanda topografya, yüzey suyu ve yeraltı suyu, toprak ve insan yapıları gibi dünya yüzeyinin biyofiziksel hali olarak da tanımlanmaktadır. Arazi örtüsü bilgileri, yeryüzündeki ormanlık alanların yıllara göre değişimi, deniz kirliliğindeki artış ve azalmanın belirlenmesi, yeryüzündeki aykırılık bölgelerinin tespiti, doğal afet sonrası hasar tespiti gibi çevrebilimle ilgili önemli konuların araştırılmasına katkı sağlamaktadır. Şehir planlama ve yönetimi, kaynak tüketimleri, kentsel gelişim, yerleşim alanlarındaki yıldan yıla değişimin belirlenmesi konularında da arazi örtüsü bilgileri temel bilgiler sağlamaktadır. Sentetik Açıklıklı Radar (SAR) sistemleri RF dalgaları vasıtası ile yer yüzeyinin görüntülenmesi, arazi örtüsü bilgilerinin elde edilmesinde önemli bilgi kaynaklarıdır. SAR sistemleri RF dalgalarının bir radar verici ünitesi ile yer yüzeyine gönderilmesi ve yüzeyden saçılan dalgaların radar alıcı ünitesi tarafından sezimlenip işlenmesi sureti ile çalışırlar. SAR imgeleri analiz edilerek ve sınıflandırılarak, arazi kullanımı, arazi örtüsü, çeşitli arazi istatistikleri ve göstergeleri de dâhil olmak üzere bir bölgede yer alan araziler hakkında bilgiler edinilebilmektedir. Tez çalışması kapsamında SENTINEL-1 uydusuna ait C-Bant Sentetik Açıklıklı Radar (SAR) imgeleri ve Hava Kuvvetleri Araştırma Labortuvarı ( Air Force Research Laboratory – AFRL ) X-Bant AFRL SAR imgeleri kullanılmıştır. Sentetik Açıklıklı Radar, kendi ışınımlarını kendisi üreten aktif bir uzaktan algılama sistemidir. Bu özelliği ile hava olaylarındaki değişimlerden etkilenmeden her türlü hava koşullarında imge sağlayabilmektedir.Bu tez çalışmasında, SAR görüntülerindeki arazi örtüsü farklı gözetimsiz sınıflandırılma yöntemleri ile ele alınmıştır ve kapsamlı olarak incelenecektir. Moment Tabanlı Yöntemler, Temel Bileşenler Analizi (TBA), Özyüz, Çekirdek TBA ve Oto Kodlayıcı öznitelik çıkarma yöntemleri kullanılarak SAR görüntülerindeki farklı arazi tiplerinin gözetimsiz sınıflandırılması üzerine çalışılmıştır. Algoritmaların bilgisayar benzetimleri gerçekleştirilmiştir ve karşılaştırmalı çalışmalar yapılmıştır. The land cover term refers to the natural and man-made physical cover of the Earth. It is also defined as the biophysical state of the Earth's surface, such as topography, surface water and groundwater, soil and human structures. Land cover information contributes to the research of important environmental issues such as the change of forested areas on the Earth by years, determination of increase and decrease in marine pollution, detection of contradictions in the Earth, damage assessment after natural disaster. Land cover information provides essential and important information on urban planning and management, resource consumption, urban development, and determination of year-to-year change in residential areas.Synthetic Aperture Radar (SAR) systems are an important source of information for the coverage of land cover by RF waves. The SAR systems operate by transmitting RF waves to the ground surface by a radar transmitting unit and sensing and processing the scattered waves from the surface by the radar receiver unit. By analyzing and classifying SAR images, land use information of a region including land use, land cover, various land statistics and indicators can be obtained. C-Band Synthetic Aperture Radar (SAR) images of the SENTINEL-1 satellite and X-Band AFRL SAR images of the Air Force Research Laboratory (AFRL) were used in this study. Synthetic Aperture Radar is an active remote sensing system that generates its own radiation. With this feature, it is not affected by changes in weather events and can provide images in all weather conditions.In this thesis, the land cover of SAR images was with different unsupervised classification methods and examined extensively. Moment Based methods, Principle Component Analysis (PCA), Eigenface, Kernel PCA and Autoencoder feature extraction methods have been studied on unsupervised classification of different terrain types in SAR images. Computer simulations of algorithms were performed and comparative studies were conducted.
Collections