Solution of feasibility problems via non-smooth optimization
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
ÖZET `FEASIBILITY` PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR CEZA FONKSİYONU METODU Iradj Ouveysi Endüstri Mühendisliği Bölümü Yüksek Lisans Tez Yöneticisi: Doç. Osman Oğuz Aralık, 1990 Bu çalışmada, doğrusal uyumluluk (feasibility) problemleri için, ceza fonksiyonu yöntemine dayalı yeni bir yaklaşım sunuyoruz. Amacımız, dışsal metod ilkesiyle çalışan etkili bir algoritma bulmaktır. Geliştirilen bu yaklaşımda, ilk olarak, herhangi bir doğrusal uyumluluk problemi (bir lineer eşitsizlikler kümesi için), sınırlandırılmamış bir ceza fonksiyonunun minimizasyonu problemine dönüştürülür. Bunun so nunda ; dışbükey, kırıklı (non-smooth) ve ikinci dereceden bir fonksiyon minimizasyonu problemi ortaya çıkmaktadır. Ceza fonksiyonunun türevinin alınamaması nedeniyle (non-differentiable) direkt olarak, düşüm (gradient) tipi metodlar uygulanamaz. Kırık noktaların yarattığı bu zorlukların üstesinden gelmek için, doğrusal olmayan geliştirilmiş (modified) bir programlama tekniği kullanılmıştır. Sonuç olarak, bu araştırmada, sözkonusu kırıklı ceza fonksiyonunun minimizasyonu için yeni bir algoritma sunuyoruz. Bu algoritmada, negatif olmama (non-negativity) kısıtlayıcıları düşürülerek ve ` Conjugate Gradient Method ` 'u kullanılarak, maximum eşlenik yönler kümesi hesaplanır. Daha sonra, ceza fonksiyonunu minimizasyonu için, bu yönler üzerinde sırasal doğru taramaları yapılır. Optimal ölçüt sağlanamadığı ve bütün yönlerdeki ilerlemelerin (improvements) yeterli olmadığı durumda, ` Conjugate Gram-Schmit Süreç 'i ile, yeni eşlenik yönler kümesi hesaplanır. Fakat, bu yönlerin birisi, bulunan noktadaki alt türevselinin (sub differential) elemanıdır. Anahtar Kelimeler: Doğrusal olmayan programlama, Doğrusal programlama, Uyumluluk problemi, Ceza fonksiyonu. ABSTRACT SOLUTION OF FEASIBILITY PROBLEMS VIA NON-SMOOTH OPTIMIZATION Iradj Ouveysi M.S. in Industrial Engineering Supervisor: Associate Prof. Dr. Osman Oğuz December, 1990 In this study we present a penalty function approach for linear feasibility problems. Our attempt is to find an effective algorithm based on an exterior method. Any given feasibility (for a set of linear inequalities) problem, is first transformed into an unconstrained minimization of a penalty function, and then the problem is reduced to minimizing a convex, non-smooth, quadratic function. Due to non-differentiability of the penalty function, the gradient type methods can not be applied directly, so a modified nonlinear programming technique will be used in order to overcome the difficulties of the break points. In this research we present a new algorithm for minimizing this non-smooth penalty function. By dropping the nonnegativity constraints and using conjugate gradient method we compute a maxi mum set of conjugate directions and then we perform line searches on these directions in order to minimize our penalty function. Whenever the optimality criteria is not satisfied and the improvements in all direc tions are not enough, we calculate the new set of conjugate directions by conjugate Gram Schmit process, but one of the directions is the element of sub differential at the present point. Keywords: Non-Smooth Optimization, Nonlinear Programming, Linear Programming, Feasibility Problem, Penalty Function. IV
Collections