Çapraz bağlı immobilize α-galaktozidaz enzim agregatlarının hazırlanması, karakterizasyonu, rafinoz ve rafinoz tip oligosakkaritlerin hidroliz proseslerinde kullanım potansiyelinin araştırılması
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
α-D-Galaktozidazlar (α-D-galaktozid galaktohidrolaz, Melibiaz, EC. 3.2.1.22) basit ve kompleks oligo- ve polisakkaritlerin (rafinoz, melibiyöz, stakiyöz, galaktomannan) α-1,6-bağlı D-galaktoz birimlerini hidrolizleyen ekzoglikozidazlardır. Galaktoz konjugatlarının α-galaktozidik bağlarının transgalaktozilasyon reaksiyonlarında da görev yapan α-galaktozidazlar doğada oldukça yaygın olarak bitkilerde, hayvanlarda ve mikroorganizmalarda bulunurlar. Hem hidrolaz hem de transferaz aktiviteleri α-galaktozidazların endüstriyel ve medikal alandaki uygulamaları için oldukça önemlidir. α-Galaktozidazlar, gıda işleme ve hayvan besleme prosedürleri, şeker endüstrisi, kağıt ve kağıt hamuru endüstrisi, kan grubu dönüşümleri ve Fabry hastalığının tedavisi gibi çeşitli biyoteknolojik ve medikal uygulama alanlarına sahiptir. Enzim immobilizasyonu teknolojisi enzim stabilizasyonu için ana metodlardan birisi olduğundan son yıllarda oldukça önem kazanmıştır. Bu bağlamda, enzim immobilizasyonu teknolojisinde kullanılabilecek enzim immobilizasyon yöntemleri her geçen gün artmaktadır. Son yıllarda enzim immobilizasyonunda, çapraz bağlı enzim agregatlarının (Cross-Linked Enzyme Aggregates; CLEAs) hazırlandığı enzim immobilizasyon tekniği oldukça revaçtadır. İmmobilizasyon için bir taşıyıcıya gereksinim yoktur. Genellikle yeterli saflıktaki proteinler bifonksiyonel reaktiflerle çapraz bağlanarak çapraz bağlı enzim agregatları oluşturulur. CLEA' lar iyi mekanik özelliklerinin yanı sıra oldukça aktif enzim preparatlarıdır. Çünkü enzimatik aktivite içermeyen çok yüksek oranda yabancı materyal içermezler ve çok sert koşullarda bile artmış kararlılık gösterebilirler ki bu onların uygulamalarını daha da değerli hale getirmektedir. CLEA' nın önemli bir avantajı, immobilizasyon sırasında kullanılan proteinin çok saf olmasına gerek yoktur, ham enzim preparatları da kullanılabilmektedir.Bu çalışmada, mısırdan (Zea mays) izole edilen ve kısmi olarak saflaştırılan α-galaktozidaz enziminin çapraz bağlı enzim agregatları (CLEA) hazırlanarak immobilizasyon gerçekleştirilmiştir. Kullanılan immobilizasyon prosedürünün optimizasyonu için immobilizasyona çeşitli parametrelerin etkisi (amonyum sülfat konsantrasyonu, protein miktarı, glutaraldehit konsantrasyonu, tampon türü, konsantrasyonu ve pH' ı, çapraz bağlama süresi, çapraz bağlama sıcaklığı ve çalkalama hızı, BSA ilavesi) incelendi. Optimum koşullarda (1:5 (v/v) enzim: amonyum sülfat oranı, 7.5 mg protein ve % 0.1 (v/v) glutaraldehit, 6 saat, 4°Ϲ, 150 rpm) % 47 aktivite geri kazanımı ile CLEA hazırlandı. Hazırlanan immobilize ve serbest enzimlerin fiziksel ve kimyasal karakterizasyonu gerçekleştirildi. Enzim aktivitesine etki eden bazı parametreler (sıcaklık, pH, substrat spesifikliği ve konsantrasyonu, efektör konsantrasyonları, inhibisyon etkisi, stabilizatör etkisi) incelenerek kararlılık testleri (termal, pH, depo, operasyonel kararlılık) ve tekrar kullanılabilirlik yapıldı. İmmobilize ve serbest enzimlerin 40°Ϲ' de maksimum aktivite gösterdiği ve optimum pH değerlerinin sırasıyla pH 5.5 ve 6.0 olduğu gözlendi. Serbest ve immobilize enzimler için farklı substratlar varlığında (pNPG, stakiyoz, melibiyoz ve rafinoz) kinetik sabitler (kM, vmax ve kcat) belirlendi. Çeşitli efektörlerin enzim aktivitesi üzerine etkileri araştırıldı. α-Galaktozidaz CLEA' sının termal, pH, depo ve operasyonel kararlılıklarının serbest enzime kıyasla oldukça iyi olduğu belirlendi. Serbest ve immobilize α-galaktozidaz enzimlerinin soya sütündeki rafinoz ve rafinoz tip oligosakkaritlerin hidroliz proseslerinde kullanım potansiyeli ile ilgili çalışmalar yapıldı. CLEA ve serbest enzimin soya sütündeki rafinoz ve stakiyozun % 85' inden fazlasını hidrolizlediği belirlendi. α-D-Galactosidases (α-D-galactoside galactohydrolase, Mellibiase, EC. 3.2.1.22) are exoglycosidases that catalyse the hydrolysis of α-1,6-bounded D-galactose residues of basic and complex oligo- and polysaccharides (raffinose, stachyose, mellibiose, galactomannans). They are widely distributed in nature and found in plants, animals and microorganisms. α-Galactosidases are also involved in transgalactosylation reactions of α-galactosidic linkages of galactose conjugates. Both the hydrolase and transferase activity of α-galactosidases are very important for their industrial applications. They have many potential biotechnological and medicinal applications such as in food processing and animal feed processing, sugar industry, pulp and paper industry, enzymatic synthesis, structural analysis, conversion of blood type and treatment of Fabry' s disease.Since enzyme immobilization technology is one of the main methods for enzyme stabilization, it has become very important in recent years. In this context, enzyme immobilization methods that can be used in enzyme immobilization technology are increasing day by day. In recent years, the enzyme immobilization technique, prepared with Cross-Linked Enzyme Aggregates (CLEAs) in enzyme immobilization, is quite popular. There is no need for a carrier for immobilization. Generally, proteins of sufficient purity are cross-linked with bifunctional reagents to form cross-linked enzyme aggregates. CLEA's are very active enzyme preparations as well as good mechanical properties. Because they do not contain very high levels of foreign material that do not contain enzymatic activity and they can show increased stability even under extreme conditions, which makes their practice even more valuable. An important advantage of CLEA is that the protein used during immobilization does not need to be very pure, and crude enzyme preparations can be used.In this study, cross-linked enzyme aggregates (CLEA) of α-galactosidase enzyme isolated and partially purified from maize (Zea mays) were prepared and immobilized. The effects of various parameters (ammonium sulfate concentration, protein amount, glutaraldehyde concentration, buffer type, concentration and pH, cross-linking time, temperature and rate, BSA addition) were examined for immobilization for the optimization of the immobilization procedure used. CLEA was prepared with 47% recovery of activity at optimum conditions (1:5 (v/v) enzyme:ammonium sulfate ratio, 7.5 mg protein and 0.1% (v/v) glutaraldehyde, 6 hours, 4°Ϲ, 150 rpm). Physical and chemical characterization of prepared immobilized and free enzymes was carried out. Stability tests (thermal, pH, storage, operational stability) and reusability were performed by examining some parameters affecting enzyme activity (temperature, pH, substrate specificity and concentration, effector concentrations, inhibition effect, stabilizer effect). Immobilized and free enzymes showed maximum activity at 40 °C and their optimal pH values were pH 5.5 and 6.0, respectively. Kinetic constants (kM, vmax and kcat) were determined for free and immobilized enzymes in the presence of different substrates (pNPG, stachyose, melibiose and raffinose). The effects of various effectors on enzyme activity were investigated. The thermal, pH, storage and operational stability of α-Galactosidase CLEA was found to be quite good compared to the free enzyme. Studies on the potential use of free and immobilized α-galactosidase enzymes in hydrolysis processes of raffinose and raffinose-type oligosaccharides in soy milk have been carried out. CLEA and free enzyme hydrolyzed more than 85% of raffinose and stachyose in soy milk.
Collections