İntegral denklemlerin yaklaşık çözümleri
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Ill ÖZET Bu tez üç bölümden oluşmaktadır. Birinci bölümde, ilk olarak integral denklemlerin tarihi gelişimi ve özellikleri verildikten sonra, Fredholm integral denklemler ve Volterra integral denklemler için yaklaşık bir çözüm bulmaya yarayan Taylor metodu incelenmiştir. İkinci bölümde, integral denklemler için verilen Taylor metodunun k. mertebeden değişken katsayılı lineer diferansiyel denklem sistemleri için uygulanabileceği gösterilmiştir. Son bölümde ise, değişken katsayılı lineer diferansiyel denklem sistemlerinin yaklaşık çözümleri ile ilgili uygulamalar yapılmıştır. ANAHTAR KELİMELER: Taylor polinomları ve serileri, integral denklemler Diferansiyel denklemler, Diferansiyel denklem sistemleri. IV ABSTRACT This thesis consists of three chapters. In the first chapter, after historical development of the topic has been given and subject has been done firstly, the Taylor polynomial method which is used for searching an approximate solutions for Fredholm integral equations and Volterra integral equations is investigated. In the second chapter, it has been investigated a Taylor polynomial solutions of k th order lineer differential equation systems with variable coefficients which is given for integral equations. In the final chapter, practice about the approximate solutions of lineer differential equation system has been done. KEY WORDS: Taylor polynomials and series, Integral equations, Differential equations, Differential equation systems
Collections