Show simple item record

dc.contributor.advisorAkdeniz, Rafet
dc.contributor.authorÇolak, Ramazan
dc.date.accessioned2020-12-10T10:25:01Z
dc.date.available2020-12-10T10:25:01Z
dc.date.submitted2019
dc.date.issued2019-11-07
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/246462
dc.description.abstractBu tezde, geliştirilen bir VAD algoritması kullanılarak; Wiener filtre, konuşma bozukluğu ağırlıklı Wiener filtre, uzamsal tahmin filtresi, minimum varyans gürültüsüz yanıt filtresi gibi çok kanallı gürültü azaltma algoritmalarının verimliliği karşılaştırılmıştır. Algoritmalarda dört farklı ses sinyali kullanılmakla birlikte, bu ses sinyallerine farklı açılarda eklenen üç farklı gürültü tipi kullanılmıştır.Filtre katsayılarını hesaplamadan önce gürültülü konuşma ve yalnızca gürültülü bölgelerin tespiti bir ses etkinliği algılama algoritması kullanılarak yapılmıştır. Bu algoritmada gürültülü konuşma ve yalnızca gürültülü bölgeleri ayırt edebilmek için; kısa süreli enerji, periyodiklik ve spektral düzlük gibi özellikler kullanılmıştır. Gürültülü konuşma ve gürültülü bölgelerin tespiti yapıldıktan sonra yukarıda bahsedilen algoritmalarla filtre katsayıları hesaplanmıştır. Son olarak da hesaplanan filtre katsayıları ile girişteki referans mikrofonunun frekans bileşenleri çarpılarak her algoritma için iyileştirilmiş sinyaller elde edilmiştir. Algoritmaların performansını hesaplamak için objektif bir metot olan bölümsel sinyal gürültü oranı ve subjektif bir metot olarak da ortalama yargı değeri kullanılmıştır. Gürültü azaltma açısından konuşma bozukluğu ağırlıklı Wiener filtrenin performansı daha iyi olsa da konuşmanın anlaşılırlığı ve algısal kalite açısından SP ve MVDR filtreleri ile daha iyi sonuçlar alınmıştır.
dc.description.abstractIn this thesis, using a developed VAD algorithm; the efficiency of multichannel noise reduction algorithms such as Wiener filter, Speech Distortion Weighted Wiener Filter, Spatial Prediction Filter, and Minimum Variance Distortionless Response (MVDR) was compared. While four different audio signals are used in the algorithms, three different types of noise are added to these audio signals at different angles. Before calculating the filter coefficients, noisy speech and only the detection of noisy areas were performed using a voice activity detection algorithm. To be able to distinguish between noisy speech and only noisy areas in this algorithm; Short Time Energy, periodicity and spectral flatness are used. After noisy speech and noisy areas were determined, the coefficients of the filter were calculated with the algorithms mentioned above. Finally, the calculated filter coefficients and the frequency components of the reference microphone at the input are multiplied to obtain improved signals for each algorithm. Segmental SNR is an objective method for calculating the performance of algorithms and MOS is used as a subjective method. Although the performance of the SDW wiener filter is better in terms of noise reduction, better results are obtained with SP and MVDR filters in terms of speech intelligibility and perceptual quality.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleÇok kanallı ortamlarda gürültü azaltma
dc.title.alternativeNoise reduction in multichannel medium
dc.typemasterThesis
dc.date.updated2019-11-07
dc.contributor.departmentElektronik ve Haberleşme Mühendisliği Anabilim Dalı
dc.identifier.yokid10244165
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTEKİRDAĞ NAMIK KEMAL ÜNİVERSİTESİ
dc.identifier.thesisid575151
dc.description.pages109
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess