İnvolüsyonlu asal halkalarda türevler
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
ÖZET Bu çalışma üç bölümden oluşmuştur. Birinci bölümde, ikinci ve üçüncü bölümlerde kullanılacak olan temel tanım ve teorem özellikleri verilmiştir. 2. Bölümde ; Daha sonraki genelleştirdiğimiz sonuçlarla ilgili önceki çalışmalar bir sıra dahilinde özetlenmiştir. 3. Bölümün ; 3. 1 kısmında, R bir asal halka, CharR ^ 2, 0 * d : R - > R, a türev ve U ^( 0 ) onun bir ideali olmak üzere halkalardaki i) VxeRiçin,[a,d(x)] eZ; ii) Vx, yeR için, [ d(x), d(y)] s Z ; iii) 0 * di : R -» R ve 0 * d2 : R -» R İki a-türev olmak üzere dıd2(R) çZ özelliklerinin genelleştirilmesi verildi. 3.2 kısmında, R bir involüsyonlu asal halka, charR & 2, S onun simetrik elemanlarının kümesi ve 0 *d:R -> R bir a-türev alınarak involüsyonlu halkalardaki (i) d(s) ç Z ise S ç Z ii) a e S için a(a)d(s) = 0 ise a = 0 veya S çS ; iii) a e S, b e R ve Vs e S için cc(a) a(s) a(b) + a(b) a(s) a(a) = 0 ise a = 0 veya b=0 özelliklerinin bir genelleştirilmesi verildi. Ayrıca S ve [d(s), s]a = 0 şartı altında S nin nilpotent elemanının olmadığı ispatlandı. 3.3. kısmında ise, involüsyonlu Asal Gamma Halkasında tanımlayarak ve türev yerine Gamma Halkasında ki türev alınarak 3.2. deki çalışmalar gözden geçirildi ABSTRACT This thesis consists of three captures, in the first chapter, some fundamental definitions and theorems, which will be used in the second and third chapter have been given. In chapter 2; Previous studies about the results which we have generalized have been summed up in order. In chapter 3. 1.; under the conditions that R is a prime ring. Char R * 2, O^d : R-»R is a a derivation,and U * (0) is an ideal of R, the generalizations of the following results have been given this results are. (i) for all x eR, [a,d(x)]eZ; (ii) for all x,yeR [d(x),d(y)]eZ; (iii) for 0*di:R->R and 0 * d2 :R->R which are a-derivations, dıd2( R )çZ. In Chapter 3.2.; Considering that R is a prime ring with involution, CharR & 2, S is the set of symmetric elements of R and 0 * d : R- »R is a derivation, the following features in involution rings have been generalized. These are (i) if d(s) çZ then SçZ, (ii) if a e S and a(a)d(s)=0 then a=0 or SçZ, (iii) if for aeS and beR, a(a)a(s)a(b)+cc(b)a(s)cc(a)= 0, VseS, then a = 0 or b = 0. Besides, while S <X Z and [d(s),s]a=0, it has been proved that S does not have nilpotent element. In chapter 3.3. ; We have proved some results in involution prime gamma- rings with derivation; which are known in ring theory. IV
Collections