Bernstein approximation for differantial, integral and integrodifferantial equations
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu çalışma beş ana bölümden oluşacak şekilde organize edilmiştir. Birinci bölümde, konu ile ilgili literatür bilgileri, genelleştirilmiş Bernstein polinomlarının ve baz formlarının tanımları ve temel özellikleri verilmiştir. İkinci bölümde, lineer denklemlerin nümerik çözümleri için genelleştirilmiş Bernstein polinomlarına dayalı sıralama yöntemleri üretilmiştir. Üçüncü bölümde, lineer olmayan denklemlerin nümerik çözümleri için kuasilineerleştirme tekniği ve sıralama noktaları kullanılarak genelleştirilmiş Bernstein polinomlarına dayalı yöntem geliştirilmiştir. Dördüncü bölümde, Bernstein polinomlarının düzgün yaklaşım özellikleri gözönüne alınarak, lineer denklemler için hata analizi irdelenmiştir. Son bölümde ise sunulan yöntemlerin lineer ve lineer olmayan denklemlere uygulanabilirliğini, doğruluğunu ve verimliliğini göstermek için çeşitli örnekler ele alınmıştır. This study is organized as five main chapters. In the first chapter, literatures on the topic, definitions and fundamental properties of the Bernstein polynomials and their basis forms are given. In the second chapter, collocation methods based on the generalized Bernstein polynomials are produced for the solutions of linear equations. In the third chapter, a numerical method based on the generalized Bernstein polynomials is developed by using the quasilinearization technique and collocation points. In the fourth chapter, by considering the uniform approximation properties of the Bernstein polynomials, the error analysis is demonstrated for the linear equations. In the final chapter, to illustrate the applicability, implementation and efficiency of the presented methods to the linear and nonlinear equations, some examples are considered.
Collections