Show simple item record

dc.contributor.advisorTuna, Hüseyin
dc.contributor.authorAkdemir, Hülya
dc.date.accessioned2020-12-10T09:47:06Z
dc.date.available2020-12-10T09:47:06Z
dc.date.submitted2019
dc.date.issued2019-10-03
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/239946
dc.description.abstractBu çalışmada ilk olarak konunun tarihsel gelişimi ifade edildi ve çalışmada kullanılan bazı tanım ve temel sonuçlar verildi.Üçüncü bölümde, kesirli mertebeden kalkulüsün temel tanım ve özellikleri verildi.Son olarak, kesirli mertebeden konform Sturm-Liouville operatörünün maximal disipatif, akretif, kendine eş genişlemeler sınır koşulları cinsinden verilmiştir.
dc.description.abstractIn this study, firstly historical development of the topic is mentioned and some definitions and main results used in the work are given.In the third section, basic definitions and properties of conformable fractional calculus are given. Finally, a description of all maximal dissipative, accretive, self adjoint and other extensions of conformable fractional Sturm-Liouville operator is given in terms of boundary conditions.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleKesirli mertebeden konform Sturm-Liouville operatörünün genişlemeleri
dc.title.alternativeExtensions of fractional order conformable Sturm-Liouville operator
dc.typemasterThesis
dc.date.updated2019-10-03
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10262685
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
dc.identifier.thesisid564511
dc.description.pages80
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess