3- boyutlu Öklid uzayında şekil eğriliği, şekil torsiyonu ve uygulamaları
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tez altı bölümden oluşmaktadır. Birinci bölüm giriş kısmına ayrılmıştır. İkinci bölümde,tez için gerekli temel kavramlar verilmiştir. Üçüncü bölümde, şekil eğriliği ile şekil torsiyonukavramları verilmiş ve bu kavramlar kullanılarak eğrilerin invaryantları incelenmiştir. Dördüncübölümde, şekil eğriliği ve şekil torsiyonu kavramları kullanılarak, birim küre üzerinde yatan bireğri yardımıyla, 3-boyutlu Öklid uzayındaki diğer eğrilerin parametrik denklemlerini bulmakiçin bir yöntem verilmiştir. Beşinci bölümde, dördüncü bölümde verilen yöntem kullanılarak,slant helisler ve küresel helisler ile ilgili çeşitli karakterizasyonlar elde edilmiştir. Son bölümtartışma ve sonuç kısmına ayrılmıştır. This thesis consists of six section. First section is devoted to the introduction. In the secondsection, the basic concepts for the thesis are given. In the third section, the concepts of shapecurvature and shape torsion are given and by means of these concepts, invariants of curvesare examined. In the fourth section, by using shape curvature and shape torsion, we give amethod to determine parametric equations of curves in the 3-dimensional Euclidean space. Inthe fifth section, various characterizations related to slant helices and spherical helices havebeen obtained by using the method given in the fourth section. In the last section, discussionand results are given.
Collections