Kolmogorov problem on widths asymptotics and pluripotential theory
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
n boyutlu Stein manifoldu üzerindeki D açık kümesinde bir K kompakt setiverilsin. D üzerinde analitik ve boyu 1 ile sınırlı fonksiyonların K ya indirgenmesiyleelde edilen fonksiyonların oluşturduğu A^d_kkümesi C(K) nın kompakt biralt kümesidir. Kolmogorov çapının asimtotu ile ilgili problem aşağıdaki gibidir:ln di(AD)K) ?i1/n, i ?! 1.Problem tek boyutta bir çok matematikçinin (Erokhin, Babenko, Zahariuta, Levin-Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Miccheli) çabasıylaçözülmüştür. n > 1 için, Zakharyuta yukardaki asimtotun /sigma= 2/pi (n!/C(K,D))1/niçin geçerli olacağını iddia etmiştir. Zakharyuta bu problemi tamamençoklu potansiyel teorik bir problem olan w(D,K; z)?1 fonksiyonunun D/K içindekikompakt setler üzerinde çoklu karmaşık Green fonksiyonlarıyla yaklaşımına indirgemiştir. Bu son problem Nivoche ve Poletsky tarafından çözülmüştür.Bu tezde Zakharyuta' nın problemi indirgemesinin ve Nivoche-Poletski sonucununayrıntılı ıspatı verilmiştir. Given a compact set K in an open set D on a Stein manifold of dimension n, the set A ? of all restriction of functions to K analytic in D with absolute value bounded by 1 is a compact subset of C(K). The problem on the strict asymptotics for Kolmogorov diameters (widths):ln d ( A )was stated by Kolmogorov in an equivalent formulation for -entropy of that set.For n=1, this problem is solved by efforts of many authors (Erokhin, Babenko,Zahariuta, Levin-Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Miccheli,et al) with = 1/ where = (K,D)= (w is a positive measure ? supported on K). For n>1 ? Zakharyuta conjectured that for `good` pairs (K,D) such an asymptoticsholds with=2 (n!/C(K,D)) ?where C(K,D) is the pluricapacity of the pairs (K,D), first introduced by Bedford-Taylor. Zakharyuta reduced this problem to a problem of pluripotential theory about approximating w(K,D;z)?1 on any compact subset of D / K by pluricomplex Green functions on D. The latter ?? problem which is known as Zakharyuta's conjecture has been solved by Nivoche ?? and Poletsky. In this thesis we give the detailed proofs of Zakharyuta's reduction ? of Kolmogorov problem to his conjecture and the Nivoche-Poletsky result.
Collections