Show simple item record

dc.contributor.advisorYurt Öncel, Sevgi
dc.contributor.authorKarapinar, Yasemin
dc.date.accessioned2020-12-09T09:47:00Z
dc.date.available2020-12-09T09:47:00Z
dc.date.submitted2009
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/205360
dc.description.abstractÇeşitli yöntemlerle kaydedilen bir görüntü, otoregresif mekansal süreç olarak modellenebilir. Uzaktan algılama, emar görüntüleri vs. gibi direkt olmayan yöntemlerle yapılan görüntüleme sırasında elde edilen görüntüler çeşitli hatalar veya aykırı değerler içerebilmektedir. Yani, kaydedilen görüntü gürültüden ve/veya çevresel nedenlerden dolayı bozulmuş olabilir.Bu çalışmada kesikli-mekan indeksli tek değişkenli otoregresif mekansal süreçlerin durum-uzay modelleri ile incelenmesini, mekansal bağımlılık katsayılarının en küçük kareler yöntemiyle tahmini ve Kalman filtresiyle durum tahminini mümkün kılan bir yaklaşım sunulmuştur. Kalman filtresinin optimalliği ancak gürültünün ve durumun Gaussian dağılımına sahip olduğu varsayımı altında sağlanabilmektedir. Bu varsayımların sağlanamaması halinde, ortaya çıkan aykırı değerlerin etkisini azaltabilmek için görüntü onarımı Dayanıklı İndirgenen Güncelleştirilmiş Kalman Filtresi ile yapılmıştır.
dc.description.abstractAn image, recorded in various way, can be modeled as autoregresive spatial process. Images, which are obtained by indirect methods such as remote sensing, MRI?s etc. during monitoring process, may have errors or outliers. In other words, recorded image might be distorted due to it?s noise and/or enviromental conditioons.In this study, an useful approach for investigation of autoregressive processes with univariate in discrete-space indexed space, estimation of spatial dependence coefficients by least squares method and state estimation by Kalman filtering is presented. Optimality of Kalman filter is provided by only under the assumption of distribution of noise and state is Gaussian distribution. To reduce of the effects that existed image restoration is done by Robust Reduced Update Kalman Filter for reducing the effects of the outliers while the assumptions are not provided.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectİstatistiktr_TR
dc.subjectStatisticsen_US
dc.titleİki boyutlu mekansal stokastik süreçlerin modellenmesi ve analizi
dc.title.alternativeIki boyutlu mekansal stokastik süreçlerin modellenmesi ve analizi
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.subject.ytmImage enhancement
dc.subject.ytmImage restoration
dc.subject.ytmSpatial processes
dc.subject.ytmRobust
dc.subject.ytmKalman filter
dc.identifier.yokid340153
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityKIRIKKALE ÜNİVERSİTESİ
dc.identifier.thesisid259647
dc.description.pages121
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess