Development of multifunctional tick repellent textiles
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tezin odak noktası, doğal özlerin kapsüllenerek kene kovuculuğu sağlayacak akıllı tekstil üretiminin yapılması ve kumaş yüzeylerinin üzerine uygulanmasıdır. Kene-Kaynaklı Ensefalitin (KKE), merkezi sinir sistemini içine alan, insanlarda bulunan bir viral enfeksiyon hastalığıdır. KKE vakalarının son birkaç yüzyıl içinde Avrupa'da arttığı görülmüştür. Hastalık, çoğunlukla menenjit (beyin ve omuriliği saran zarın iltihaplanması), ensefalit (beyin iltihaplanması) veya meningoensefalit (beyin iltihaplanması ve menenjit) olarak ortaya çıkmaktadır. Dünya Sağlık Örgütüne göre KKE hastalarının %35-58'i, çeşitli zihinsel ve nöropsikiyatrik şikayetler, denge kaybı, baş ağrısı, disfazi, duyma bozuklukları ve omurilik felci gibi uzun dönemli nörolojik problemlerle karşılaşmaktadır ve hastaların %2'si hastalıktan dolayı ölmektedir. Hijyenik kıyafet ve spor giyiminin yüksek müşteri talebi, anti-kene ve anti-mikrobiyal tekstil ürünleri için önemli bir market oluşturmuştur. Bu yüzden, insan sağlığının gelişimini sağlayacak, ölümcül böcek ısırmalarının risklerini minimuma indirecek, özgün koruyucu metotlar ve/veya ürünler üretmek acil bir ihtiyaç haline gelmiştir. Kalıcı kokular ve cilt yumuşatıcıları, antibiyotikler gibi tıbbi uygulamalar ve tıbbi tekstiller için anti-mikrobiyal ajanlar gibi yenilikçi tekstil ürünleri devamlı üretilmekte ve geliştirilmektedir. Bu gibi uygulamalar, kıyafet üreticileri tarafından, rekabeti arttırmak, market dinamiklerini geliştirmek ve sanayinin ekonomik büyümesini sağlayabilmek için kullanılmaktadır. Bu tez çalışmasında, kene-kaynaklı ensefalitin hastalığının tedavi edilmesini ve/veya yayılmasını engellemesi için, biyoaktif yağların kapsülleme yöntemiyle, nano-mikro kapsüller halinde tekstillere uygulanması üzerine çalışılmış ve geliştirilmiştir. Kapsülleme tekniğinde kapsüller kontrollü koşullarda, iç dolgusundaki sıvıyı (belirli bir amaca hizmet etmesi için) serbest bırakan küçük konteynerler olarak kullanır. Boş nano-kapsüller ve taşıyıcı madde olarak okaliptüs yağı içeren kapsüller, diblok kopolimer (polyethylene glycol-polycaprolactone PEG-b- PCL) kullanılarak kapsüllenmiş ve çözücü buharlaştırma yöntemi ile hazırlanmıştır. PEG-b-PCL ayrıştırılabilir bir polimerdir ve toksik olmayan doğası, ayrıştırılana kadar mekanik bütünlüğü sağlayabilme özelliği ve kontrollü oranlarda ayrıştırılabilme özellikleri nedeniyle kullanılmaktadır. Geliştirilmiş kapsüller, yüzey biçimlerine, boyutlarına, boyut dağılımlarına, yüzey gerilimi ve kontrollü salımlarına göre karakterize edilmişlerdir. Laboratuvarda sentezlenmiş kapsüller ve ticari olarak bulunabilen polyüre bazlı kapsüller, kene kovuculuğu test etmek için, seçilmiş tekstiller üzerine uygulanmıştır. Kapsülleme yöntemiyle kene kovuculuğu sistemik bir şekilde çalışabilmek için, ilk önce tekstillerin temel özellikleri üzerine çalışılmıştır. İlk olarak, en uygun tekstili bulabilmek için, beş farklı tekstil örneği incelenmiştir. Üzerinde çalışılan tekstiller şöyledir; (i) %100 taraklanmış pamuk, (ii) %100 penye, (iii) %100 polyester, (iv) %100 viskoz ve (v) %100 tensil. Temel etkileşim gücü anlayışı doğrultusunda, hidrofobik-hidrofobik etkileşimi sayesinde, hidrofobikliğin, kapsüllerin tekstil üzerine yapışmalarını arttırmaya yardım edeceği düşünülmektedir. İkinci bir mekanizma olarak, tekstilin ve kapsülün yüzey yüklerini zıt hale getirerek, elektrostatik etkileşim üzerine de yoğunlaşılmıştır. İlerleyen çalışmalar için pamuk, polyester ve karışımları, projenin bir odak noktası olan, spor giyimlerindeki yaygın kullanımları dolayısı ile düşünülmüştür. Ayrıca bu kumaşların daha yüksek kontak açıları, 123.38 3.91 (pamuk) ve 121 5.83 (polyester), su itici bitirme solüsyonu içinde işlendikten sonra, kumaşların damıtılmış suya hidrofobik özellik gösterdiğine işaret eder. İkinci aşamada, en uygun tekstil kompozisyonu ve bitirme solüsyonundaki en uygun silikon miktarını bulabilmek için bir deney tasarımı yürütülmüştür. Deney tasarımı, mikro/nano-kapsüllerin tekstil örneklerine yapışmalarını maksimuma çıkarabilecek optimum yüzey özellikleri için 13 adet test çıkarılmıştır. Deney tasarımının, optimizasyonu için yüksek hidrofibiklik ve yüksek negatif yüzey gerilimi planlanmıştır. Optimizasyon sonucunda, kapsüllerin maksimum yapışmaları için, %100 pamuk kumaşı ve bitirme solüsyonunda yüksek silikon oranı daha optimal bulunmuştur. Buna rağmen, spor giyimi için uygun olan, %65 pamuk ve %35 polyesterin birleşimi tercih edilmiş, yine de kumaş, pamuk ipliklerinin polyester iplikleri üzerine dokunmasıyla hazırlanmıştır. Dokuma, tekstilin kapsüllere tutunma yetilerini arttırırken, kapsüllere zarar verebilecek, ütülenme gereksinimini azaltılmıştır. Seçilen tekstil, hazırlanmış olan, okaliptüs yağı içeren, nano-mikro kapsüllerle pamuklu tarafına spreyle uygulanarak kaplanmıştır. Kapsüllerin tekstile yapışmaları, tekstillerin, spreylemeden önce ve sonraki ağırlıklarına bakılarak analiz edilmiştir. Ağırlık farkıyla ortaya çıkan kapsül tutunma istatistiksel deney analizleri ile belirlenen şartlarla uyumlu bulunmuştur.Özetle, bu çalışmanın sonucunda, kene kovuculuğu için kapsüllerin tutunmasını maksimuma çıkaracak optimum tekstil kompozisyonu ve dokuma stili belirlenmiş, kapsüllerin ve tekstil yüzeylerinin, hidrofobik ve elektrostatik özelliklerinin kaplama etkenliğine ilişkili olduğu gözlemlenmiştir. This thesis focuses on smart textile manufacturing with tick repellency through encapsulation of the natural extracts and applying them onto the fabric surfaces. Tick-borne encephalitis (TBE) is a human viral infectious disease involving the central nervous system. TBE cases in Europe have steadily increased over the last few decades. The disease is most often manifested as meningitis (inflammation of the membrane that surrounds the brain and spinal cord), encephalitis (inflammation of the brain), or meningoencephalitis (inflammation of both the brain and meninges). According to the World Health Organization 35-58% of TBE patients suffer long-term neurological problems, such as various cognitive or neuropsychiatric complaints, balance disorders, headache, dysphasia, hearing defects, and spinal paralysis, and 2% die from the disease. Consumer demand for hygienic clothing and active wear has created a substantial market for anti-tick and anti-microbial textile products. Therefore, it is an urgent need to find novel protective methods and/or products that can prevent or minimize the risks of the bites of these deadly insects, and consequently contributing to improvement of human health.Innovative textile products are continuously being developed and introduced to the market such as the ones with long-lasting fragrances and skin softeners, medical applications such as antibiotics, and antimicrobial agents for medical textiles. These are some applications for which clothing manufacturers utilize resources to add value to textiles in order to increase their competitiveness, improve market dynamics and enable economic growth of the industry. In this thesis work, textiles decorated with nano-micro capsules encapsulating bioactive oils, have been developed and studied for their anti-tick properties to cure and/or prevent the spread of tick-borne diseases. Encapsulation techniques make use of microcapsules which act as small containers of liquids to be released from the inner core under controlled conditions to address a specific purpose. Empty nano-capsules and capsules with eucalyptus oil as the core ingredient encapsulated by diblock co-polymer: polyethylene glycol-polycaprolactone (PEG-b-PCL) shell, were prepared using solvent evaporation technique. PEG-b-PCL is biodegradable polymer and has been used for its non-toxic nature, ability of maintaining good mechanical integrity until degraded and being capable of controlled rates of degradation. The developed capsules were characterized based on their surface morphology, size, size distribution, surface charge and controlled release. The capsules synthesized in lab along with commercially available polyuria based capsules have been applied to the textile selected, for tick repellency.In order to systematically study the tick repellency through capsules attachment the textile properties were thoroughly studied initially. For the determination of the best suited textile five different textile samples were studied in the first phase. The textiles studied are (i) %100 carded cotton, (ii) %100 combed cotton, (iii) %100 polyester, (iv) %100 viscose and (v) %100 tencel. Based on the fundamental understanding of the interaction forces it is believed that hydrophobicity should help enhance the attachment of capsules to the textile surfaces due to the hydrophobic-hydrophobic interactions. As a second mechanism, we also concentrated on the electrostatic attraction by tuning the surface charge of the textile and the capsules opposite. Cotton and polyester and their blends were chosen for further study due to their wide availability, use in sports outfits which is also the focus of this project. In addition these fabrics have relatively higher contact angles of 123.38º + 3.91º (cotton) and 121º + 5.83º (polyester) indicating hydrophobic nature with DI water after treatment in water repelling finishing solution. In the second phase a design of experiment (DoE) was conducted in order to determine the best textile composition and concentration of silicon in the finishing solution. The DoE revealed 13 tests to be performed for the design of optimum surface properties to enable maximum micro/nano-capsule adherence to the textile samples. The optimization of the responses in DoE was focused on higher hydrophobicity and higher negative surface charge in order to get more amount of positively charged silicon adsorbed. The optimization led to higher desirability for 100% cotton fabric treated with higher silicon content in the finishing solution to maximize the capsules attachment. However, a blend of %65 cotton and %35 polyester was chosen which is suitable for the sports outfits. Yet it has been prepared by weaving cotton fibers on top while polyester fibers on the bottom surface. The idea of this weaving style helps maximize the capsule attachment ability of textile while reducing the need for ironing, which can deform the capsules. The selected textile was treated, sprayed on cotton side, with the prepared nano-micro capsules loaded with eucalyptus oil. The attachment of capsules to the textile was studied by change in the pre and post spray weight of textile. The capsule attachment results from weight difference are in good agreement with predicted capsules attachment obtained from DoE study for a specific combination of textile composition and the concentration of silicon in the finishing solution. In summary, an optimal textile composition and weaving style was determined in this study to maximize the capsule attachment ability for tick repellency. It was observed that there is a good correlation between the hydrophobic and electrostatic nature of the capsules and the textile surface.
Collections