Hilbert uzayında simetrik bir operatörün sınır değer şartları altında genişlemeleri ve spektral yapısı
- Global styles
- Apa
- Bibtex
- Chicago Fullnote
- Help
Abstract
Bu tezde, soyut simetrik operatörlerin genişleme teorisinden bahsedilmiştir. Fakat burada geleneksel durumdan farklı bir yaklaşım yapılmış ve sınır değer problemleri teorisine adapte edilmiştir. Genişlemelerin bazı sınıflarının yani maksimal dissipativ ve öz-eşlenik genişlemeler gibi genişlemelerin tanımlarının yanı sıra bu sınıfların genişlemelerinin spektrum yapısı sınır değerler uzayı olarak adlandırılan ifadeyle verilmiştir. Daha sonra bazı belirli durumlarda alışılmış sınır şartlarına dönüştüğü için yapılan bu çalışma tutarlı ve doğaldır. Burada önemli bir yer bir Hilbert uzayında ikili bağıntıların çeşitli gösterimleri hakkındaki teoremler tarafından yapılmış olmasıdır. Bundan dolayı da burada yapılanlar genişleme teorisinin yapısının bir başlangıç noktasıdır. In this thesis, it is devoted to the theory of extensions of abstract symmetric operators. Its presentation somewhat differs from the traditional one and is adapted to the theory of boundary value problems. The description of various classes of extensions, such a maximal dissipative and self-adjoint, as well as the structure of the spectrum of extensions from these classes, is given in terms of so-called to the boundary value spaces. The latter are convenient and natural because they runing to the usual boundary condition in certain concrete situations. Here, an important place is occupied by theorems about various representations of binary relations in a Hilbert space. These are the starting point in constructing the theory of extensions.
Collections