Show simple item record

dc.contributor.advisorBayır, Raif
dc.contributor.authorKoçak, Emel
dc.date.accessioned2020-12-06T11:25:16Z
dc.date.available2020-12-06T11:25:16Z
dc.date.submitted2010
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/99256
dc.description.abstractAlternatörler mekanik enerjiyi elektrik enerjisine çeviren elektromekanik cihazlardır. Alternatörler taşıtlarda, rüzgâr türbinlerinde ve hidroelektrik santrallerinde elektrik enerjisi üretiminde kullanılmaktadırlar. Bu cihazlar arızalandığında hem maddi hem manevi kayıplara neden olmaktadırlar. Bu yüzden alternatörlerde arızaların erken teşhis edilmesi önemlidir. Bu çalışma ile alternatörlerde arıza teşhisi yapılabilmektedir. Alternatöre ait akım, gerilim ve devir bilgileri bir veri alış veriş kartı yardımıyla gerçek zamanlı olarak Matlab ortamına aktarılmaktadır. Alternatör arızalarını tespit etmek için yapay zeka teknikleri kullanılmıştır. Bu teknikler bulanık mantık, ileri beslemeli ağı ve olasılık sinir ağıdır. Bu tekniklerden olasılık sinir ağı başarımının yüksek olmasından dolayı gerçek zamanlı arıza teşhisinde tercih edilmiştir. Alternatör arızalarının erken teşhis edilmesi ile üretilen enerjinin verimliliği artacaktır. Erken teşhis ile de bakım masraflarının azalması sağlanacaktır.
dc.description.abstractAlternators are equipments that convert mechanical energy to electrical energy. Alternators are used in vehicles, wind power turbines and hydroelectric power plants to generate electrical energy. When this equipments breakdown they damage financially and incorporeally so early fault diagnosis of alternators is important. In this study, alternator failures can be diagnosed. Current, voltage, and revolution data are possible to be measured and they were real time transferred to Matlab via data acquisition card. Artificial intelligence techniques were used to detection alternator failures. These techniques are fuzzy logic, feed forward neural network and probabilistic neural network. Because of its success probabilistic neural network is used in real time fault diagnosis. Renewable energy sources will be used more efficiently and repairing costs will be reduced by early diagnosis of failures.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.subjectEnerjitr_TR
dc.subjectEnergyen_US
dc.titleOlasılık sinir ağı kullanarak alternatör arızalarının tespiti
dc.title.alternativeFault diagnosis of alternators using probabilistic neural network
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentElektronik-Bilgisayar Eğitimi Anabilim Dalı
dc.subject.ytmAlternators
dc.subject.ytmArtificial intelligence
dc.subject.ytmFault diagnosis
dc.identifier.yokid379719
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityKARABÜK ÜNİVERSİTESİ
dc.identifier.thesisid274894
dc.description.pages116
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess