Show simple item record

dc.contributor.advisorBüyükkaya, Eliya
dc.contributor.authorUçar, Mustafa Said
dc.date.accessioned2020-12-06T09:47:50Z
dc.date.available2020-12-06T09:47:50Z
dc.date.submitted2019
dc.date.issued2020-07-21
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/96521
dc.description.abstractBilgisayarların hesaplama gücündeki artış her gecen gün daha zor problemlerin çözümünü kolaylaştırmaktadır. Özellikle numerik sensör verileri düşünüldüğünde insan ile kıyaslanıldığında, bilgisayarlar tartışmasız daha fazla veri işleme kapasitesine sahip. Bilgisayar tabanlı sistemler, uygun modeller ve veri setleri kullanıldığında, günlük hayattaki problemlerimizi çözmektedirler.Otomatize edilmiş araç sınıflandırma sistemleri hem Şehirlerin çevre düzenlemelerinde, yol planlamalarında önemli bir rol oynamaktadır. Çeşitli sensörler ve kamera sistemleri kullanılarak devam eden çalışmalar halen yapılmakta. Bu çalışmada, araçların manyetik alan verisi toplanıldı, işaretlendi ve 2 farklı veri seti oluşturuldu. Her iki veri seti, çeşitli Makine Öğrenmesi ve Sinir Ağları modelleriyle eğitildi ve sonuçları kıyaslandı. Bu çalışmada yapılan katkı, ileriki çalışmalarda da kullanılmak üzere veri seti oluşturulmasıdır.
dc.description.abstractAdvancements in computational power allow us to create more complex systems to solve various complicated problems. Considering numerical sensor values, computers are able to process more and more data compared to humans. Computer-based systems provide useful statistics, and predictions for problems and helps us to solve our problems in daily life.Automated vehicle classification plays an important role in City Environmental Planning and will play an even more important role when the Self-Driving Vehicles increased in traffic. Experiments on several different sensor and camera systems are ongoing. In this study, we collect magnetic field sensor data of passing vehicles and created two datasets. Multi-class classification algorithms using Neural Networks developed and key parameters are compared. Also, popular Machine Learning algorithms also trained and evaluated. The main contribution of this research is data collection; the creation of a dataset for further research and development.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleVehicle classification using magnetic sensor data
dc.title.alternativeManyetik sensör verisi ile araç sınıflandırma
dc.typemasterThesis
dc.date.updated2020-07-21
dc.contributor.departmentMühendislik Bilimleri Anabilim Dalı
dc.subject.ytmArtificial neural networks
dc.subject.ytmMagnetic properties
dc.subject.ytmMotion sensors
dc.subject.ytmOptical sensors
dc.subject.ytmImage classification
dc.subject.ytmSensors
dc.subject.ytmVehicle tracking system
dc.subject.ytmMachine learning
dc.subject.ytmNeural networks
dc.subject.ytmVehicle classification
dc.identifier.yokid10252702
dc.publisher.instituteLisansüstü Eğitim Enstitüsü
dc.publisher.universityKADİR HAS ÜNİVERSİTESİ
dc.identifier.thesisid554688
dc.description.pages53
dc.publisher.disciplineBilgisayar Mühendisliği Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess