Show simple item record

dc.contributor.advisorTütüncü Aşçı, Gözde Yazgı
dc.contributor.authorKoçhan, Necla
dc.date.accessioned2020-12-06T09:44:41Z
dc.date.available2020-12-06T09:44:41Z
dc.date.submitted2020
dc.date.issued2020-05-05
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/96436
dc.description.abstractSon zamanlarda kanser araştırmalarında, bilinen bir kanser tipi olan bir hastanın o kanserin çeşidine göre doğru sınıflandırılması o hasta için daha iyi tahminlere dayanan ve kişiye özel tedavi sağlamaktadır. Bu nedenle, hastanın kanser çeşidine göre sınıflandırılması çok önemlidir ve bu, genetik bilgi kullanılarak yapılabilinmektedir. Mevcut sınıflandırıcıların çoğu genlerin bağımsız olduğu varsayımına dayanmaktadır; ancak, bu varsayım asıl RNA-Sekans sınıflandırma problemleri için gerçekçi bir yaklaşım değildir. Bu nedenle, bu tezde, genler arasındaki bağımlılık yapısını dikkate alan yeni bir sınıflandırıcı önerilmektedir. Genler arasındaki bağımlılık önce kovaryans matrisi ve daha sonra lokal kovaryans matrisi ile modellenmektedir. Lokal kovaryans matrisi, lokal bağımlılık fonksiyonu kullanılarak tahmin edilmektedir. Sınıflama algoritması R programlama dilinde kodlanmış olup RNA-Sekans verileri için yeni bir sınıflama paketi geliştirilmiştir. Yeni sınıflandırıcının performansı, gerçek RNA-Sekans verileri kullanılarak mevcut sınıflandırıcılar ile sınıflandırma hataları açısından karşılaştırılmıştır.
dc.description.abstractRecently in cancer research, true classification of the sub-type of a patient with a particular cancer, leads a better predictive and a customized treatment for that patient. Therefore, classification of a patient to a cancer sub-type has a crucial importance and can be done by using genetic information. Most of the existing classifiers assume that genes are independent; however, this is not a realistic approach for real RNA-Seq classification problems. For this reason, in this thesis a new classifier, which incorporates the dependence structure between genes into a model, is proposed. The dependency between genes is first modelled by sample covariance matrix and then by local covariance matrix. The local covariance matrix is estimated by the local dependency approximation. The classification algorithm is coded in R programming language and a new classification package for RNA-Seq data is developed. The performance of this new classifier is compared with the existing classifiers over real RNA-Seq data sets, in terms of classification error rates.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBiyoistatistiktr_TR
dc.subjectBiostatisticsen_US
dc.titleA new rna-seq data classifier based on quantile transformation
dc.title.alternativeKuantil transformasyon tabanlı yeni bir rna-sekans veri sınıflandırıcısı
dc.typedoctoralThesis
dc.date.updated2020-05-05
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10327408
dc.publisher.instituteLisansüstü Eğitim Enstitüsü
dc.publisher.universityİZMİR EKONOMİ ÜNİVERSİTESİ
dc.identifier.thesisid620567
dc.description.pages72
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess