Show simple item record

dc.contributor.advisorKaya, Doğan
dc.contributor.authorKutlu, Büşra
dc.date.accessioned2020-12-04T18:13:50Z
dc.date.available2020-12-04T18:13:50Z
dc.date.submitted2015
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/95282
dc.description.abstractBu çalışmada, Korteweg- de Vries-Burgers denkleminin ve genelleştirilmiş Kawahara denkleminin integrallenemez olduğu Painlevé testi kullanılarak gösterilmiştir. Her iki denklem için Painlevé analizinin yeni bir yaklaşımı, teorik olarak kurulmuştur. Daha sonra integrallenemez bir denklemin genel değil özel tam çözümünün olacağı belirtilmiştir. Denklemlerin tam çözümü ise Hirota metodu ve basitleştirilmiş Hirota metodu ile bulunmuştur.
dc.description.abstractIn this study, by using Painlevé test, it is determined that the Korteweg- de Vries-Burgers' equation and generalized Kawahara equation are nonintegrable. Painlevé analysis was established as a new approach to both theoretical equations. Then, it is expressed that a nonintegrable equation has exact solution not general solution. As a final, the exact solutions of the equations are obtained by using a simplified Hirota method.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleİntegrallenebilir denklemler için soliton çözümler ve uygulamaları
dc.title.alternativeSoliton solutions to integrable equations with aplications
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10080517
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityİSTANBUL TİCARET ÜNİVERSİTESİ
dc.identifier.thesisid395488
dc.description.pages68
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess