Show simple item record

dc.contributor.advisorYıldız, İsmet
dc.contributor.authorAykanat, Sevil
dc.date.accessioned2020-12-04T12:36:13Z
dc.date.available2020-12-04T12:36:13Z
dc.date.submitted2014
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/84935
dc.description.abstractBu tezde tek ve çok karmaşık değişkenli ünivalent fonksiyonların özellikleri incelenmiş ve integral operatörü kullanılarak ünivalent fonksiyonların bir alt sınıfı elde edilmiştir. Diferensiyel subordinasyon kuralı uygulanarak da bu yeni sınıfın özellikleri incelenmiştir. Ayrıca çok değişkenli ünivalent fonksiyonlar için Loewner denkleminin teorik yönleri incelenmiştir. Genel Loewner zincirleri ve bunların geçiş dönüşümleri için Lipschitz düzeni dikkate alınmıştır. Bunun bir sonucu olarak, keyfi bir Loewner zincirinin, Loewner diferensiyel denklemini karşıladığını ve bunların geçiş dönüşümlerinin bir başlangıç değer problemine karşılık geldiği gösterilmiştir. Bir boyut ve daha yüksek boyutlardaki Loewner teorisi arasındaki en önemli farklardan birinin parametrik gösterimlerin oynadığı roller olduğu gösterilmiştir. Tek değişkenli fonksiyonların içindeki durumun aksine, çok değişkenli fonksiyonların içinde ilk elemanının parametrik gösterimi olmayacak şekilde Loewner zincirlerinin mevcut olduğu gösterilmiştir. Çok değişkenli Loewner diferensiyel denklem için varlık teoremleri kompakt çok değişkenli Caratheodory sınıfına eş teoremlerin bir sonucu olarak gelişmiştir.
dc.description.abstractIn this thesis univalent functions of one and several complex variables properties were investigated and a subclass of univalent functions was obtained by using integral operatör. The properties of this new class has been examined by applying differential subordination rule. The theoric perspectives of Loewner equation for several variables of univalent functions were also analyzed. Lipschitz regularity was taken into consideration for general Loewner chains and their transition mappings as a result of this, it was showen that an arbitrary Loewner chain corresponds Loewner differential equation and their transition mappings corresponds to a initial value problem. One of the most important differences between Loewner theory in one dimension and in higher dimensions was shown as the role played by parametric representation. In contrast to the situation in one variable, in several variables there exist Loewner chains such that the initial elemant does not have parametric representation. In the existence theorems for the Loewner differential equation in several variables were improved as a consequence of a theorem that the analog of the Caratheodory class in several variables is compact.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleTek ve çok karmaşık değişkenli ünivalent fonksiyonlar
dc.title.alternativeOne and several complex variables of univalent functions
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10030130
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityDÜZCE ÜNİVERSİTESİ
dc.identifier.thesisid379803
dc.description.pages56
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess