Show simple item record

dc.contributor.advisorDefterli, Özlem
dc.contributor.authorAltunalan, Tuğba
dc.date.accessioned2020-12-04T11:20:11Z
dc.date.available2020-12-04T11:20:11Z
dc.date.submitted2016
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/78044
dc.description.abstractBu tezde, kısmi türevli denklemlerin bazı sınıflarının bir dizi spektral yöntemler kullanılarak nasıl sayısal olarak çözüldüğü incelenmiştir. Bu yöntemler sırasıyla; spektral sıralama yöntemi ve spektral galerkin yöntemidir. İlk olarak, ortogonal polinomlar ve kısmi türevli denklemlerin temelleri hakkında kısa bir hatırlatma yapılmıştır. Tezin bir sonraki kısmında, ele alınan spektral yöntemlerin tanımlamaları verilmiştir. Bilim ve mühendisliğin farklı alanlarında ortaya çıkan ve kısmi türevli denklemlerle modellenebilen gerçek dünya problemlerinin çözümünde, spektral yöntemlerin kullanımı ve önemi açıklayıcı örnekler kullanılarak verilmiştir. Böylelikle, çalışılan spektral yöntemlerin kullanımı, verimi ve önemi vurgulanmıştır. Çeşitli uygulama alanlarından derlenen ve yakın zamanda çalışılan bu önemli örneklerde, kesirli türevli operatörler olarak adlandırılan yeni ve çok kullanışlı matematiksel araçlar dahil edilmiştir. Bahsi geçen spektral yöntemlerin kullanımından elde edilmiş olan sayısal sonuçlar grafiklerle verilmiş, literatürdeki diğer bazı sayısal yöntemlerle yapılan karşılaştırılması sunulmuştur.
dc.description.abstractThis thesis examines how some classes of partial differential equations are solved numerically by using a set of spectral methods, namely Spectral Collocation method and Spectral Galerkin method. It begins with a brief reminder about orthogonal polynomials and fundamentals of partial differential equations. Then, the description of the considered spectral methods are given in the following part of the thesis. The use of spectral methods for solving real-world problems which are modelled by partial differential equations, is given through some illustrative examples which appears in different fields of science and engineering. Therefore, the usability, efficiency and the importance of the studied spectral methods are emphasized. In these recently studied representative examples, which are reviewed from various application areas, some new and very performant mathematical tools were involved, namely fractional differential operators. The obtained numerical results from the mentioned spectral methods were presented through simulations with a comparative study by some other numerical methods in the literature.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleSome spectral methods with applications for the numerical solutions of partial differential equations
dc.title.alternativeKısmi türevli denklemlerin sayısal çözümleri için bazı spektral yöntemler ve uygulamaları
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Bilgisayar Anabilim Dalı
dc.identifier.yokid10123667
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityÇANKAYA ÜNİVERSİTESİ
dc.identifier.thesisid444359
dc.description.pages98
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess