Show simple item record

dc.contributor.advisorGörür, Abdül Kadir
dc.contributor.authorAl-Kubaisi, Falah Amer Abdulazeez
dc.date.accessioned2020-12-04T11:15:50Z
dc.date.available2020-12-04T11:15:50Z
dc.date.submitted2018
dc.date.issued2018-12-04
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/77584
dc.description.abstractMakine öğreniminin en önemli bileşenlerinden bir tanesi sınıflandırmadır. Duygu analizi, sınıflamanın alt alanlarından biridir. Duygu analizi insanların duygularıyla ilgili düşüncelerini araştıran ve sınıflandıran yöntemlerle çalışır ve konuya ve hatta diğer metinlere yönelik altta yatan izlenimleri çıkarır. Bu çalışmada, metinleri olumlu ya da olumsuz olarak analiz edebilen ikili duygu sınıflandırması için bir sinir ağı modeli geliştirmeye çalıştık. Pek çok makale olasılıksal sınıflandırıcıların ve doğrusal sınıflandırıcı (SVM) yöntemlerinin Yapay Sinir Ağı yöntemlerinden daha doğru olduğu sonucuna varmışlardır. Bu çalışmada, Sinir Ağ yöntemleri alanında gelişme için daha fazla alan olduğunu kanıtladık. Sonuçlarımızı dört denetimli öğrenme yöntemi ile karşılaştırdık: Naïve-Bayes, Maksimum Entropi, Destek Vektör Makinesi ve Stokastik Gradyan Descent. Bahsi geçen bu yöntemler ile karşılaştırıldığı durumda daha iyi sonuçlar elde ettik. RNN (Tekrarlayan Nöral Ağ) ile Glove (Kelime Temsili Global Vektörler) kullanarak% 91.04 doğruluk elde ettik.
dc.description.abstractOne of the major components of machine learning is classification. Sentiment analysis is one of the sub-fields of classification. It works on the methods that study and classify the opinions of people regarding their feelings and it extracts any underlying impressions toward subjects or even other texts. In this study, we worked on developing a neural network model for binary sentiment classification which can analyze data as being either positive or negative. Many papers conclude that probabilistic classifiers and linear classifier (SVM) methods are more accurate than Neural Network methods. In this study, we proved (demonstrated) that there is more space for development in the Neural Network methods field. We compared our results with four supervised methods: Naïve Bayes, Maximum Entropy, Support Vector Machine, and Stochastic Gradient Descent. We achieved better results than the results of the mentioned methods by using RNN (Recurrent Neural Network) with GLOVE (Global Vectors for Word Representation) and achieved a result of 91.04% accuracy.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleDeveloping the recurrent neural network with long-short term memory and word2vec representation for sentiment classification
dc.title.alternativeDuygu sınıflandırma için uzun kısa süreli bellek ve word2vec temsilcisi ile yenileme neural ağının geliştirilmesi
dc.typemasterThesis
dc.date.updated2018-12-04
dc.contributor.departmentBilgi Teknolojileri Anabilim Dalı
dc.subject.ytmLanguage classification model
dc.subject.ytmCellular artificial neural networks
dc.identifier.yokid10212317
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityÇANKAYA ÜNİVERSİTESİ
dc.identifier.thesisid521442
dc.description.pages79
dc.publisher.disciplineBilgisayar Sistemleri Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess