Show simple item record

dc.contributor.advisorTurhan, Çiğdem
dc.contributor.advisorŞengül, Gökhan
dc.contributor.authorSezen, Arda
dc.date.accessioned2023-09-22T11:31:42Z
dc.date.available2023-09-22T11:31:42Z
dc.date.submitted2021-09-02
dc.date.issued2021
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/733475
dc.description.abstractBu tezde, görüntü açıklama alanında görüntü tanımı çıkarımını içeren bilişsel görev için hibrit bir çözüm önerilmektedir. Sinir Ağları ile ilgili önceki çalışmalar çoğunlukla doğru etiketleri seçmeye ve/veya bir resmi tasvir etmek için ilgili etiketlerin sayısını artırmaya odaklandı. Ancak, bir resmi tanımlamak için bir dizi ilgili etiket oluşturmak ve bu resmi cümleler yoluyla tasvir etmek yapısal, sözdizimsel ve anlamsal olarak tamamen farklı olgulardır.Bu çalışmada spor alanındaki görüntülerin kontrollü bir ortamda doğal dil tanımlarını oluşturan bir çerçeve sunulmaktadır. Yaklaşımımız, görüntülerin cümle açıklamalarını oluşturmak için Yapay Zeka ve Ontolojilerden yararlanmaktadır. Geliştirilen çerçeve, derin öğrenme modellerinin ve ontoloji sınıflarının örneklerinden türetilen hizalı açıklama sonuçlarının yeni bir kombinasyonunu sunmaktadır.
dc.description.abstractIn this thesis, we propose a hybrid solution for the cognitive task of generating image descriptions in the image annotation domain. Previous work on Neural Networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict a picture. However, creating a set of related labels to describe a picture and depicting that picture through sentences are completely different phenomena, structurally, syntactically, and semantically.We present a framework that generates natural language descriptions of images in the sports domain within a controlled environment. Our approach leverages Artificial Intelligence and Ontologies to generate sentence descriptions of images. Our framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMühendislik Bilimleritr_TR
dc.subjectEngineering Sciencesen_US
dc.titleImage annotation using deep learning and semantic web technologies
dc.title.alternativeDerin öğrenme ve anlamsal ağ teknolojilerini kullanarak görüntü açıklaması
dc.typedoctoralThesis
dc.date.updated2021-09-02
dc.contributor.departmentYazılım Mühendisliği Ana Bilim Dalı
dc.subject.ytmImage processing
dc.subject.ytmArtificial neural networks
dc.identifier.yokid10223756
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityATILIM ÜNİVERSİTESİ
dc.identifier.thesisid677629
dc.description.pages190
dc.publisher.disciplineDiğer


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess