COVİD-19 pandemisi etkisindeki havayolu yolcu talebinin yapay zeka kullanılarak tahmin edilmesi
dc.contributor.advisor | Sezen, Bülent | |
dc.contributor.author | Yüce, Nalan | |
dc.date.accessioned | 2023-09-22T11:31:13Z | |
dc.date.available | 2023-09-22T11:31:13Z | |
dc.date.submitted | 2022-05-26 | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/733401 | |
dc.description.abstract | 2019 yılında Çin'de ortaya çıkan Covid-19 salgını kısa sürede tüm Dünya'da yayılmıştır. Salgın sebebiyle küresel çapta birçok sektör olumsuz etkilenmiştir. Havayolu yolcu taşımacılığı da Covid-19 salgınından en yoğun etkilenen sektörlerden biridir. Havayolu yolcu mili havacılık sektöründe sıkça kullanılan bir metrik olup toplam uçulan mil ile toplam yolcu sayısının çarpımı ile elde edilir. Havayolu yolcu mili metriği ile sektördeki hareketlilik ölçülebilmektedir. Bu çalışmada Amerika Birleşik Rezerv Ekonomik Veri (FRED) sisteminden alınan Amerika havayolu yolcu mili metriğine ait 2000 ile 2021 yılları arasında toplam 259 veri kullanılmıştır. Kullanılan veri seti yukarı doğru artış eğilimi barındırdığı için durağan özellik göstermemektedir. Bunun yanında yılın bazı mevsimlerinde artan, bazı mevsimlerinde de tam tersine azalan bir yapıya yani, mevsimselliğe sahip olduğu gözlemlenmiştir. Derin öğrenme metotlarından Tekrarlayan Sinir Ağlarının (RNN) LSTM (Uzun Kısa Dönem Hafıza) mimarisinin durağan olmayan veri seti ile çalışabilmesi ve mevsimsellik etkilerini hesaba katabiliyor olması sebebiyle bu çalışmada tercih edilmiştir. Covid-19 döneminde veri setinin eğiliminde meydana gelen ani değişimin LSTM mimarisinin performansına etkisini gözlemleyebilmek amacıyla hem Covid-19 dönemi verilerini içeren veri seti hem de Covid-19 dönemini içermeyen veri seti ile iki ayrı tahmin yapılmış ve sonuçlar kıyaslanmıştır. Bulgulara göre, Covid-19 dönemini içermeyen veri seti ile yapılan tahminlerde LSTM mimarisinin performansının çok daha yüksek olduğu görülmüştür. Aynı veri setinin AR (Otoregresif) ile de tahmini yapılmış ve LSTM mimarisinin performansı ile kıyaslanmıştır. Son olarak LSTM mimarisi ile 1960-2020 yılları arasında Türkiye'ye ait yolcu sayısı verileri ile tahmin yapılmıştır. | |
dc.description.abstract | The Covid-19 epidemic, which emerged in China in 2019, spread all over the world in a short time. Due to the epidemic, many sectors around the world have been adversely affected. Airline passenger transport is also one of the sectors most heavily affected by the Covid-19 outbreak. Airline passenger mile is a frequently used metric in the aviation industry and is obtained by multiplying the number of miles flown by the number of passengers. With the airline passenger mile metric, the mobility in the sector can be measured. In this study, a total of 259 data for the American airline passenger mile metric taken from the United Reserve Economic Data (FRED) system between 2000 and 2021 were used. Since the data set used has an upward trend, it does not show a static feature. In addition, it has been observed that it has a seasonality that increases in some seasons of the year and decreases in some seasons, on the contrary. LSTM (Long Short-Term Memory) architecture of RNN (Recurrent Neural Networks), which is one of the deep learning methods, was preferred in this study because it can work with non-stationary data set and can take seasonal effects into account. In order to observe the effect of the sudden change in the trend of the data set during the Covid-19 period on the performance of the LSTM architecture, two separate estimations were made with both the data set containing the Covid-19 period data and the data set not containing the Covid-19 period, and the results were compared. According to the findings, it was seen that the performance of the LSTM architecture was much higher in the predictions made with the data set that did not include the Covid-19 period. The same data set was also estimated with the AR (Autoregressive) and compared with the performance of the LSTM architecture. Finally, with the LSTM architecture, estimations were made with the number of passengers in Turkey between the years 1960-2020. | en_US |
dc.language | Turkish | |
dc.language.iso | tr | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | İşletme | tr_TR |
dc.subject | Business Administration | en_US |
dc.title | COVİD-19 pandemisi etkisindeki havayolu yolcu talebinin yapay zeka kullanılarak tahmin edilmesi | |
dc.title.alternative | Prediction of airline passenger demand affected by the COVID-19 pandemic using artificial intelligence | |
dc.type | masterThesis | |
dc.date.updated | 2022-05-26 | |
dc.contributor.department | İşletme Ana Bilim Dalı | |
dc.identifier.yokid | 10174968 | |
dc.publisher.institute | Sosyal Bilimler Enstitüsü | |
dc.publisher.university | GEBZE TEKNİK ÜNİVERSİTESİ | |
dc.identifier.thesisid | 724300 | |
dc.description.pages | 55 | |
dc.publisher.discipline | Diğer |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |