Show simple item record

dc.contributor.advisorYantır, Ahmet
dc.contributor.authorŞengün, Mehmet
dc.date.accessioned2021-05-08T12:07:53Z
dc.date.available2021-05-08T12:07:53Z
dc.date.submitted2014
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/698818
dc.description.abstractVolterra tipi integral denklemlerinin mühendislik ve uygulamalı fizik gibi uygulamalı bilimlerde pek çok uygulaması vardır. Bu tezde integral denklemlerin genel teorisini inceledik ve x(t)=g(t,x(t) )+(h(t)+∫_0^t▒〖k(s,t)f(s,x(λs) )ds)〗) t∈I=[0,1] denkleminin azalmayan çözümlerinin varlığını kompakt olmama ölçümü ve Darbo sabit nokta teoremi yardımıyla gösterdik.
dc.description.abstractIntegral equations of Volterra type have applications in many applied sciences such as engineering and applied physics. In this thesis we investigate the general theory of integral equations and prove the existence of nondecreasing solutions of the equationx(t)=g(t,x(t) )+(h(t)+∫_0^t▒〖k(s,t)f(s,x(λs) )ds)〗) t∈I=[0,1] by using measure of noncompactness and Darboaux fixed point theorem.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleİkinci dereceden Volterra integral denklemlerinin azalmayan çözümlerinin varlığı
dc.title.alternativeİki̇nci̇ dereceden Volterra i̇ntegral denklemleri̇ni̇n azalmayan çözümleri̇ni̇n varliği
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.identifier.yokid10046406
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityYAŞAR ÜNİVERSİTESİ
dc.identifier.thesisid382277
dc.description.pages89
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess