Show simple item record

dc.contributor.advisorYantır, Ahmet
dc.contributor.authorTopraktepe, Rasim
dc.date.accessioned2021-05-08T12:07:50Z
dc.date.available2021-05-08T12:07:50Z
dc.date.submitted2014
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/698790
dc.description.abstractİntegral denklemler uygulamalı bilimlerde çok önemli bir yere sahiptir. Elektromanyetik teorisinden termo elastikitiye, mekanikten quantum dinamiğine kadar bir çok alanda uygulaması vardır.Bu tezdex(t)=f_1 (t,x(t),x(a(t) ))+(Gx)(t) ∫_0^t▒〖f_2 (t,s)(Qx)(s)ds〗 tekil integral denklemi çalışılmış ve çözümlerin varlığı için yeter koşullar bulunmuştur. Ana sonuç için Darboux Sabit Nokta teoremi ve kompakt olmama ölçümü kullanılmıştır.
dc.description.abstractIntegral equations play important role in applied sciences. It has may applications ranging from electromagnetic theory, thermaoellastics, mechanics and quantum Dynamics.In this thesis we study the sinqular integral equation x(t)=f_1 (t,x(t),x(a(t) ))+(Gx)(t) ∫_0^t▒〖f_2 (t,s)(Qx)(s)ds〗 and obtain the sufficient conditions for the existence solutions. The measure of noncompactnes and Darboaux fixed point theorem are the main tools for the result.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleTekil volterra integral denklemlerinin pozitif çözümleri
dc.title.alternativePositive solutions of singular volterra integral equation
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.identifier.yokid10046410
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityYAŞAR ÜNİVERSİTESİ
dc.identifier.thesisid382279
dc.description.pages62
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess