Show simple item record

dc.contributor.advisorÖzbayoğlu, Ahmet Murat
dc.contributor.authorErkut, Umur
dc.date.accessioned2021-05-08T11:22:45Z
dc.date.available2021-05-08T11:22:45Z
dc.date.submitted2010
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/683632
dc.description.abstractTeknik analiz göstergesi kullanımı, finans tahmini yaparken en çok başvurulan teknik analiz yöntemlerinden biridir. Genellikle bu göstergeler, teknik analiz esnasında alım ve satım kuralları oluşturmak için kullanılırlar. Bazı istatistiksel analizler sonucu, teknik göstergeler için belirli anahtar parametre değerleri bulunmuştur. Bu değerler genellikle yuvarlanmış ve sade sayılardan oluşmaktadır. Böylece oluşturulan kurallar daha kolay hatırlanabilir olmaktadır. Ancak, bu kurallar yatırımcıya değişen piyasa koşullarında nasıl davranması gerektiği konusunda bir bilgi vermez. Hangi teknik gösterge kuralının, hangi durumda ve hangi değerler ile kullanılması gerektiğini bilmeyen bir yatırımcı, yanlış bir kural seçimi sonucu çok büyük kayıplar yaşayabilir. Bu tez çalışmasında birkaç farklı ETF performansı farklı teknik göstergeler kullanılarak analiz edilmiştir. Teknik gösterge parametreleri genetik algoritmalar yardımı ile eniyilenmiş, böylece analiz edilen her teknik gösterge için ETF'ler üzerinde en iyi performansı veren parametreler elde edilerek kurallar oluşturulmuştur. Tez çalışması süresince kullanılan her teknik gösterge için, farklı piyasa şartları (yükselen piyasa trendi ve alçalan piyasa trendi) göz önünde bulundurulmuş ve bir ETF veya birden fazla ETF aynı anda kullanılarak en iyi performansı veren kurallar üretilmiştir. Üretilen kurallar test verileri üzerinde uygulanarak, kuralların başarımları hesaplanmıştır. Ayrıca, daha iyi performans elde edebilmek için tek bir teknik gösterge için kural oluşturmak yerine farklı teknik göstergelerin birleştirilmesiyle yeni kurallar üretilmeye çalışılmıştır.
dc.description.abstractTechnical indicators are widely used in stock market forecasting, mostly to trigger the buy/sell rules in the technical analysis. Through some statistical analysis some key values for several indicator parameters are obtained. These values are generally adjusted to provide simple, round numbers, so they become part of easy-to-remember rules. However, it is not clear how changing market conditions affect them. An investor who does not know which technical indicator is used in which conditions and with which values, can experience big losses due to inappropriate rule selection. In this study, the performances of several different ETFs are analyzed using different technical indicators. The indicator parameters are optimized against portfolio performance using genetic algorithms thus, optimum rules are generated with those parameters. During the study, different analyses are implemented according to different market conditions (uptrend or downtrend) with using an ETF or a basket of ETFs for each technical indicator used in the study. Generated rules are tested in different time period and the performance of each rule is calculated. Moreover, new rules are generated with the method of combining different technical indicators in a rule to get higher profits instead of using only one indicator in a rule.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleGenetik algoritmalar ile portföy performans eniyilemesi için teknik analiz göstergesi seçimi
dc.title.alternativeSelection of technical analysis indicator for optimizing porfolio performance with genetic algorithms
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.identifier.yokid381157
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
dc.identifier.thesisid289988
dc.description.pages152
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess