Show simple item record

dc.contributor.advisorAvci, Mustafa
dc.contributor.authorSüslü, Kenan
dc.date.accessioned2020-12-04T08:57:28Z
dc.date.available2020-12-04T08:57:28Z
dc.date.submitted2017
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/68327
dc.description.abstractİlk bölümde, bundan sonraki bölümlerde işlenecek olan konuları ilgilendiren Lebesgue uzayı ve Sobolev uzayı ve bu uzaylarla ilgili temel kavram,notasyon ve teoremlere yer verilmiştir.İkinci bölümde Orlicz uzayları ve bu uzaylarla ilgili temel kavram,notasyon ve teoremlere yer verilmiştir.Üçüncü bölümde varyasyonel yaklaşım ve varyasyonel yaklaşımla ilgili temel kavram, tanım ve teoremlerden söz edilmiş, ayrıca varyasyonel yaklaşımın uygulandığı bazı problem türlerinden söz edilmiştir.Varyasyonel yaklaşım,özellikle lineer olmayan kısmi diferansiyel denklemlerin analizinde kullanılan çok etkili bir araçtır.Bazı diferansiyel denklemlerin çözümünü veren genel bir teorinin olmaması,varyasyonel yaklaşımın önemini daha da arttırmaktadır. Kısacası varyasyonel yaklaşım bir diferansiyel denklemi doğrudan çözmek yerine bu denklemin çözümlerini ilgili enerji fonksiyonelinin kritik noktalarına veya minimize dizisine karşılık getirerek bulmayı amaçlayan bir yaklaşımdır.Dördüncü bölüm ise tez çalışmasının orijinal kısmı olup, bu bölümde Robin sınır-değer koşullarına sahip nonlokal bir eliptik denklemin çözümleri varyasyonel yaklaşım ve Ekeland varyasyonel prensibi kullanılarak Orlicz-sobolev uzaylarında gösterilmiştir.
dc.description.abstractIn the first chapter, the basic concepts, notation and theorems regarding Lebesgue and Sobolev spaces are given.In the second section, the basic concepts, notation and theorems regarding Orlicz spaces are given.In the third section, the basic concepts,notation and theorems of the variational approach and are given. The variational approach has been applied to many problem types since it is a very effective tool for analyzing nonlinear partial differential equations. The absence of a general theory that solves every type of nonlinear differential equations has increased the importance of the variational approach. In short, the variational approach is a method that aims to find the solution of the given differential equation by corresponding its solutions to the critical points of the corresponding energy functional or the minimize sequence instead of directly solving the differential equation.The fourth section is the original part of the thesis work, in which the solutions of a nonlocal elliptic equation with Robin boundary-value conditions are obtained in Orlicz-Sobolev spaces by using the variational approach and the Ekeland variational principle.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleOrlicz-Sobolev uzaylarında nonlokal denklemlerin çözümleri üzerine
dc.title.alternativeOn solutions of nonlocal equations in Orlicz-Sobolev spaces
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10152258
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBATMAN ÜNİVERSİTESİ
dc.identifier.thesisid472956
dc.description.pages61
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess