Evrimsel algoritmalar ile yayılma stratejisi opsiyon çiftlerinin eniyilemesine bağlı iki aşamalı bir alım satım modeli geliştirilmesi
dc.contributor.advisor | Özbayoğlu, Ahmet Murat | |
dc.contributor.author | Uçar, Mustafa | |
dc.date.accessioned | 2021-05-08T11:22:01Z | |
dc.date.available | 2021-05-08T11:22:01Z | |
dc.date.submitted | 2014 | |
dc.date.issued | 2018-08-06 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/683265 | |
dc.description.abstract | Yapay zeka, portföy optimizasyonu ve fiyatlandırma problemlerinde uzun süredir kullanılmaktadır. Bu çalışmada iki aşamalı bir opsiyon stratejisi modellenmiş, Genetik Algoritma ve Parçacık Sürüsü Eniyilemesi algoritmalarıyla eniyilenmesi amaçlanmıştır. Finansal stratejiler eniyileneceklerinde fiyatların yükselme ve düşme eğiliminde olmak üzere ikiye ayrılarak eniyilenmeleri başarımı arttırmaktadır. Bu nedenle ilk aşamada, eğilim tespit yönteminin eniyilenmesi amaçlanmıştır. Eğilim tespiti için finansal varlığın yakın geçmiş ve uzak geçmişteki fiyat ortalamaları alınmıştır. Yakın geçmiş ortalaması uzak geçmiş ortalamasından fazla olduğunda fiyatın yükselme, tersi durumda ise düşme eğiliminde olduğu kabul edilmiştir. 1. aşamada yakın geçmişin ve uzak geçmişin kaç günden oluşacağı parametreleri eniyilenmiştir. 2. aşamada, 1. aşamada bulunan değerler kullanılarak eğilim tespiti yapılmış, fiyatın yükselme eğilimi göstermesi durumunda Alım Opsiyonlu Yayılım Stratejisi, düşme eğilimi göstermesi durumunda da Satım Opsiyonlu Yayılım Stratejisi kullanılmıştır. Alınacak/satılacak opsiyonların kullanım fiyatları ve vadeleri eniyilenmiştir. Geliştirilen model 5 ETF üzerinde denenmiş, sonuçlar 3 farklı stratejiyle karşılaştırılmış ve en yüksek kârı bu çalışmada önerilen modelin getirdiği görülmüştür. | |
dc.description.abstract | Artificial intelligence methods are being used for a long time for portfolio optimization and asset pricing. In this study, a two level option trading strategy has been modeled and optimized by Genetic Algorithm and Particle Swarm Optimization. It is known that performance of financial strategies go up when prices are grouped by trend. Therefore, trending strategy is optimized in the first level. Short-term and long-term average prices are calculated for trending strategy. When short-term average is greater than long-term average, it is accepted as a sign of upward trend; and when short-term average is less than long-term average, it is accepted as a sign of downward trend. Length of short-term and long-term ranges are optimized in the first level. In the second level, trend is identified by results of the first level. Then, The Bull Call Spread strategy is used in upward trend days and The Bear Call Spread is used in downward trend days. Strike prices and expiration dates of the options to be traded are optimized. This model is tested on 5 different ETF's, results are compared with 3 different strategies in the literature and it is observed that this model makes highest profit among these strategies. | en_US |
dc.language | Turkish | |
dc.language.iso | tr | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol | tr_TR |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Evrimsel algoritmalar ile yayılma stratejisi opsiyon çiftlerinin eniyilemesine bağlı iki aşamalı bir alım satım modeli geliştirilmesi | |
dc.title.alternative | Developing a two level option trading strategy based on option pair optimization of spread strategies with evolutionary algorithms | |
dc.type | masterThesis | |
dc.date.updated | 2018-08-06 | |
dc.contributor.department | Bilgisayar Mühendisliği Ana Bilim Dalı | |
dc.subject.ytm | Option | |
dc.subject.ytm | Evolutionary algorithms | |
dc.subject.ytm | Technical analysis | |
dc.subject.ytm | Particle swarm optimization | |
dc.subject.ytm | Genetic algorithms | |
dc.identifier.yokid | 10048959 | |
dc.publisher.institute | Fen Bilimleri Enstitüsü | |
dc.publisher.university | TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ | |
dc.identifier.thesisid | 371110 | |
dc.description.pages | 94 | |
dc.publisher.discipline | Diğer |