Show simple item record

dc.contributor.advisorTürkşen, İsmail Burhan
dc.contributor.authorDilden, Elif Burcu
dc.date.accessioned2021-05-08T11:21:59Z
dc.date.available2021-05-08T11:21:59Z
dc.date.submitted2014
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/683251
dc.description.abstractBir sistemin yapısını incelemek, girdi/çıktı arasındaki ilişkiyi belirlemek ve tahmin modelleri oluşturabilmek oldukça önemlidir. Aristo mantığı ile yapılan sistem modellemelerinde, katı sınırlar vardır. Çalışmamızda katı sınırlar, bulanık (dereceli) mantık kullanılarak esnekleştirilmiş sistem modellemesi yapılmıştır. Bulanık fonksiyonlar (BF) [4] yaklaşımı temel alınarak, bulanık c- ortalamalar (BCO) algoritması ile üyelik değerleri elde edilmiş ve bulanık regresyon modelleri kurulmuştur. Türkşen tarafından sezgisel olarak öne sürülen bulanık fonksiyonlar (BF) yaklaşımının çıkarsaması yapılarak, Bulanık Normal Denklemler (BND) tanımlanmıştır. Bulanık normal denklem sistemiyle üyelikler ve üyeliklerin farklı dönüşümlerinin girdi matrisi içerisine eklenmesinin analitik çözümü gösterilmiştir. Apple şirketi hisse kapanış fiyatları temel alınarak, ertesi gün kapanış fiyatları bulanık fonksiyonlar yaklaşımı ile tahmin edilmiştir. Aynı veri kümesi için bulanık normal denklemler tanımlanmıştır. İkinci bir veri kümesi, Beton Basınç Sertliği, üzerinde aynı bulanık normal denklem sistemi tanımlanmış ve bulanık regresyon modelleri oluşturulmuştur. BF yaklaşımı ile kurulan farklı bulanık regresyon modellerinin sonuçları belirlenen performans ölçütleri olan yapay sinir ağları (YSA) ve adaptif ağ yapısına dayalı bulanık çıkarım sistemi (ANFIS) ile karşılaştırılmıştır.
dc.description.abstractWhile constructing a system model to find out input/ output relation, fuzzy functions (FF) method use Fuzzy c- means (FCM) algorithm to determine membership values. Instead of determining fuzzy rule bases (FRB) for each cluster, by using FF method each cluster is explained by functions. Proposed FF approach says that membership values and their user defined transformations should be add into the input matrices as independent variable with the real inputs. This suggestion is heuristic. In this study, we defined Fuzzy Normal Equations (FNE). Our proposed fuzzy normal equations explain the detail of how to add various transformations of membership values into the input matrices in fuzzy functions approach. We have modelled two real life data sets. One of them is Concrete Compressive Strength and the other one is Apple's Closing Stock Price data set. Fuzzy model performances compared with two benchmark strategies: Artificial neural networks (ANN) and adaptive neuro fuzzy systems (ANFIS).en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEndüstri ve Endüstri Mühendisliğitr_TR
dc.subjectIndustrial and Industrial Engineeringen_US
dc.titleBulanık sistem modelleme
dc.title.alternativeFuzzy system modeling
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentEndüstri Mühendisliği Ana Bilim Dalı
dc.identifier.yokid10047228
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
dc.identifier.thesisid371091
dc.description.pages140
dc.publisher.disciplineEndüstri Mühendisliği Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess