Show simple item record

dc.contributor.advisorGürbüz, Sevgi Zübeyde
dc.contributor.authorTekeli, Bürkan
dc.date.accessioned2021-05-08T11:21:54Z
dc.date.available2021-05-08T11:21:54Z
dc.date.submitted2014
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/683208
dc.description.abstractHareketli bir hedefin parçalarının salınımı ve titreşiminden kaynaklanan mikro-Doppler izleri, sadece araçlar, tanklar, helikopterler, hatta hayvanlar gibi değişik tip hedeflerin sınıflandırılması ve ayırt edilmesi için değil aynı zamanda insan hareket tiplerinin tespiti ve ayırt edilmesi içinde kullanılmaktadır. Bu amaçla mikro-Doppler izlerinin sınıflandırılması ile ilgili yapılan çalışmalarda birçok öznitelik çıkarılarak önerilmiştir. Ancak önerilen özniteliklerin tamamının sınıflandırma işlemi için kullanılması optimum başarım elde edilmesini garantilememektedir. Yüksek bir başarım tüm öznitelikler arasından özniteliklerin bir kısmının seçimi ile oluşturulan bir küme ile sağlanabilir. Bu tez kapsamında insan hareket sınıflandırma problemi için tüm özniteliklerin kullanılması ile elde edilen başarım ve öznitelik seçimi yoluyla oluşturulan kümedeki özniteliklerin başarımları verilerek bu durum gösterilmiştir. Daha belirgin bir şekilde açıklanırsa, karşılıklı bilgi miktarı tabanlı öznitelik seçimi algoritmaları, optimal başarımı veren özniteliklerin karşılaştırılması ve incelenmesi için kullanılmışlardır. Elde edilen sonuçlar, açının bilinmesi durumunda mRMR algoritmasının daha iyi sınıflandırma başarımı verdiğini ve açının bilinmemesi durumunda MIFS-U algoritmasının daha iyi çalıştığını göstermektedir. Öznitelik seçimi kullanıldığı zaman başarım tüm özniteliklerin kullanılması durumuna göre %1.1 artmaktadır. Bu tez kapsamında yapılan çalışma değişen çalışma durumlarında uyarlanabilen öznitelik seçimi için bir temel sağlamaktadır.
dc.description.abstractThe micro-Doppler signatures resulting from vibration or rotation of parts of a moving target can be used to not just classify different targets like vehicles, tanks, helicopters, or even animals, but also to classify and recognize different activities. For this purpose, a plethora of features have been extracted and proposed in the literature for classification of micro-Doppler signatures. Yet, use of all features does not guarantee the optimal classification performance. A high classification performance or success rate can be better obtained using a subset of features, which are selected among all possible features. In this thesis, this situation is demonstrated by comparing results on classification performance obtained with not only a selected subset of features, but also using all features for human activity classification. More specifically, information theory based feature selection algorithms are examined and compared for selecting features having optimal classification performance. Feature selection is considered for changing radar-target geometries aspect angle as well. Results Show that when the aspect angle is known mRMR algorithm yields higher correct classification rates, while for unknown angles MIFS-U algorithm performs better. When feature selection is used %1,1 improvement is achived over when all features are used. Work provides basis for adaptive selection of features under varying operational conditions.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleRadarla insan hareket sınıflandırma için bilgi-kuramsal tabanlı öznitelik seçimi
dc.title.alternativeInformation theory based feature selection for human activity classification with radar
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentElektrik-Elektronik Mühendisliği Ana Bilim Dalı
dc.identifier.yokid10062201
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
dc.identifier.thesisid378501
dc.description.pages108
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess