Show simple item record

dc.contributor.advisorSankır, Mehmet
dc.contributor.advisorDemirci Sankır, Nurdan
dc.contributor.authorSemiz, Levent
dc.date.accessioned2021-05-08T11:21:34Z
dc.date.available2021-05-08T11:21:34Z
dc.date.submitted2016
dc.date.issued2019-07-12
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/683015
dc.description.abstractHidrojen üretimi ve enerji depolama, yenilenebilir enerji alanındaki en önemli iki konudur. Hidrojen gelecek vaat eden sıfır emisyonlu temiz enerji taşıyıcısıdır. Fakat hidrojenin ulaşım yakıtı olarak güvenli, verimli ve ucuz yerinde depolama konusu, yaygın kullanımı önündeki en önemli engeldir. Kriyojenik ve yüksek basınçlı kaplar gibi geleneksel hidrojen depolama teknikleri ihtiyacı karşılayamamaktadır. Diğer yandan, daha yüksek hidrojen yoğunluğuna sahip kimyasal hidrürler gelecek vaat eden katı hidrojen depolama adaylarıdır. Kimyasal hidrürlerden hidrojen üretiminde kullanılan iki ana metot hidroliz ve termolizdir. Termoliz termal enerjiye gereksinim duymakta ve hidroliz de yavaş kinetiğe sahip olmaktadır. Bu nedenle yüksek hidrojen üretim hızlarına ulaşmak için katalitik hidroliz en iyi yöntemdir. Bu konuda kataliz olarak değerli ve değerli olmayan metaller kullanılmaktadır. Değerli olmayan metallerin dayanımının çok düşük olması sebebiyle, değerli metaller bu konuda büyük önem taşır. Değerli metallerin maliyetleri ise yaygınlaşmalarının önündeki en büyük engeldir. Bu nedenle katalitik aktiviteleri arttırılarak kullanılan miktarın düşürülmesi, maliyet etkinlik açısından önem arz etmektedir. Bu amaçla, tez kapsamında alaşımlama-seçimli aşındırma yaklaşımı ile yüksek yüzey alanlı platin ve rutenyum katalizörler elde edilmesi hedeflenmiştir. İnce filmlerindeki platin miktarı yalnızca 44.0 µg cm-2'dir ve bu değer literatürdeki en düşük değerlerden biridir. Ayrıca bu ince filmler 130 L dk-1 gkatalizör-1 hidrojen üretim hızı göstermiştir. Esnek alt taşlar üzerine uygulanabilmekte ve en az 25 saat süresince performansını korumaktadır. Bu yaklaşımla gözenekli toz katalizörlerin de elde edilmesinin mümkün olduğu gösterilmiştir. Tez çalışmasında ayrıca, proton iletken zarlar kullanılarak, asitlerden kontrollü proton iletimi ile kimyasal hidrürlerden yüksek hızda ve kararlı hidrojen üretilebileceği gösterilmiştir. Üretilen bu katalizsiz hidrojen üretim sistemi ile bir yakıt pili 300 saat boyunca çalıştırılmıştır. Tez çalışmalarının son bölümünde ise vanadyum redoks akış bataryaları üzerinde çalışılmıştır. Hidrojen anlık olarak kullanılabilen ve kimyasal hidrür olarak yüksek yoğunlukta saklanabilen bir yenilenebilir enerji taşıyıcısıdır. Diğer yandan, rüzgar ve güneş enerjisi ise şebeke enerjisine olan bağımlılığın azaltılmasında kullanılan yardımcı enerji üretim sistemleridir. Ayrıca, ihtiyaç duyulan enerji bu sistemlerin ürettiği enerjiden az olduğu durumda, fazla enerjinin depolanması gerektirir. Akış bataryaları rüzgar ve güneş enerjisinin depolanması konusunda en iyi alternatif olarak öne çıkmaktadır. Özellikle vanadyum redoks akış bataryaları anot ve katot elektroliti olarak aynı malzemenin kullanılması sayesinde büyük avantaja sahiptir. Kullanımlarının yaygınlaşmasındaki en büyük engel, hücre maliyetinin büyük kısmını oluşturan, ticari olarak kullanılmakta olan NafionTM zarları ve vanadyum elektrolitleridir. Ayrıca, NafionTM zarlar batarya kapasitesinin ciddi şekilde azalmasına yol açan yüksek vanadyum geçirgenliği yüzünden dezavantajlıdır. Hem maliyet etkinlik hem de batarya performansının arttırılması amacıyla yakıt pillerinde de kendinin kanıtlamış doğrudan sülfonlanmış poli(arilen eter sülfon) zarları vanadyum redoks akış bataryalarında test edilmiştir. Doğrudan sülfonlama ile sonradan sülfonlamanın olumsuz etkileri ortadan kaldırılmıştır. Bu zarlar kullanılarak elde edilen bataryaların kulombik, voltaj ve enerji verimi performanslarının NafionTM kullanılan bataryalardan daha yüksek olduğu gösterilmiştir.
dc.description.abstractHydrogen production and energy storage are two major research fields in the renewable energy area. Hydrogen is a promising clean energy carrier with zero-emission. However, safe, efficient and cheap on-board storage of hydrogen as a transportation fuel is the most important obstacle for the widespread usage of hydrogen. Conventional hydrogen storage techniques such as cryogenic and high-pressure vessels do not supply the needs of required demand. On the other hand, chemical hydrides are promising solid hydrogen storage candidates for hydrogen energy having higher hydrogen density. Hydrolysis and thermolysis are two major methods to produce hydrogen from chemical hydrides. However, thermolysis requires thermal energy and hydrolysis has slower kinetics. Hence, catalytic hydrolysis is the best way in order to achieve higher hydrogen generation rates. Typically, precious and non-precious metals have been used as catalysts. Due to the lower durability of non-precious metals, precious metals are in great importance for this subject. Furthermore, price of precious metals is the biggest problem for their commercialization. Hence, decreasing the amount of use of these metals by increasing their catalytic activity is important in terms of cost-effectiveness. For this purpose, by alloying-dealloying approach, catalysts with higher surface area were aimed within the scope of this thesis. Platinum amount in thin films are only about 44.0 µg cm-2 which is one of the smallest value in the literature. Moreover, very high hydrogen generation rates (up to 130 L min-1 gcatalyst-1) from these thin films was observed. These thin films could also be applied on flexible substrates and they retained their performances for more than 25 hours. It has been also showed that it is possible to produce porous powder catalysts with this approach. Besides this method, with the aid of controllable proton transfer, stable hydrogen generation with fast kinetics from chemical hydrides has been introduced by the use of proton conductive membranes especially used in fuel cells and flow batteries. A fuel cell was powered along 300 hours with this catalyst free hydrogen generation system. Hydrogen is a renewable energy carrier that can be used instantaneously and stored as chemical hydride with higher density. On the other hand, wind and solar powers are auxiliary energy generation systems used in order to decrease the dependency to grid energy. Moreover, when the energy demand is lower than the energy produced by these renewable energy resources especially at nights, they are in need of storage. Flow batteries have become prominent as one of the best alternative for storage of wind and solar powers. Especially, vanadium redox flow batteries (VRFB) have great advantage since same material is used as anolyte and catholyte during the VRFB's operation. The most important problem for the commercialization of these batteries is the use of commercially available NafionTM membranes and vanadium electrolytes which are the most expensive parts of the cell. Also, NafionTM membranes suffer from higher vanadium permeability which leads to a dramatic decay in capacity of the batteries. In order to increase cost-effectiveness and the battery performance, directly sulfonated poly(arylene ethersulfone) membranes which have been used in fuel cells are tested in vanadium redox flow batteries. Problems arising from post-sulfonation were prevented by direct sulfonation. Batteries assembled with these membranes showed higher coulombic, voltage and energy efficiencies than batteries assembled with NafionTM membranes.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEnerjitr_TR
dc.subjectEnergyen_US
dc.subjectMühendislik Bilimleritr_TR
dc.subjectEngineering Sciencesen_US
dc.titleYakıt pili sistemlerinde ve akış bataryalarında kullanılmak üzere ileri enerji malzemelerinin geliştirilmesi ve test edilmesi
dc.title.alternativeAdvanced energy materials for fuel cell systems and flow batteries
dc.typedoctoralThesis
dc.date.updated2019-07-12
dc.contributor.departmentMikro ve Nanoteknoloji Ana Bilim Dalı
dc.identifier.yokid10116849
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
dc.identifier.thesisid436172
dc.description.pages148
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess